These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 4632394)

  • 1. Effect of weak acids on amino acid transport by Penicillium chrysogenum: evidence for a proton or charge gradient as the driving force.
    Hunter DR; Segel IH
    J Bacteriol; 1973 Mar; 113(3):1184-92. PubMed ID: 4632394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic properties, nutrient-dependent regulation and energy coupling of amino-acid transport systems in Penicillium cyclopium.
    Roos W
    Biochim Biophys Acta; 1989 Jan; 978(1):119-33. PubMed ID: 2563328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cycloheximide on L-leucine transport by Penicillium chrysogenum: involvement of calcium.
    Hunter DR; Norberg CL; Segel IH
    J Bacteriol; 1973 Jun; 114(3):956-60. PubMed ID: 4200128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the antimicrobial action of pyrithione: effects on membrane transport, ATP levels, and protein synthesis.
    Chandler CJ; Segel IH
    Antimicrob Agents Chemother; 1978 Jul; 14(1):60-8. PubMed ID: 28693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The specific transport system for lysine is fully inhibited by ammonium in Penicillium chrysogenum: an ammonium-insensitive system allows uptake in carbon-starved cells.
    Bañuelos O; Casqueiro J; Gutiérrez S; Riaño J; Martín JF
    Antonie Van Leeuwenhoek; 2000 Jan; 77(1):91-100. PubMed ID: 10696883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of phenylacetic acid by Penicillium chrysogenum Wis 54-1255: a critical regulatory point in benzylpenicillin biosynthesis.
    Fernández-Cañón JM; Reglero A; Martínez-Blanco H; Luengo JM
    J Antibiot (Tokyo); 1989 Sep; 42(9):1398-409. PubMed ID: 2507493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplicity and regulation of amino acid transport in Penicillium chrysogenum.
    Benko PV; Wood TC; Segel IH
    Arch Biochem Biophys; 1969 Feb; 129(2):498-508. PubMed ID: 5772963
    [No Abstract]   [Full Text] [Related]  

  • 8. [Penicillin biosynthesis and amino acid metabolism in Penicillium chrysogenum in experiments with washed mycelium].
    Nikol'skiĭ LM; Levitov MM
    Antibiotiki; 1979 Nov; 24(11):803-8. PubMed ID: 41476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repression of phenylacetic acid transport system in Penicillium chrysogenum Wis 54-1255 by free amino acids and ammonium salts.
    Martínez-Blanco H; Reglero A; Ferrero MA; Fernández-Cañón JM; Luengo JM
    J Antibiot (Tokyo); 1989 Sep; 42(9):1416-23. PubMed ID: 2507495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of the general amino acid permease of Penicillium chrysogenum by transinhibition and turnover.
    Hunter DR; Segel IH
    Arch Biochem Biophys; 1973 Jan; 154(1):387-99. PubMed ID: 4632118
    [No Abstract]   [Full Text] [Related]  

  • 11. [Determination of intracellular pH by the distribution of benzoic acid in S. cerevisiae. Amino acid transport and proton gradient].
    de Bongioanni LC; Ramos EH
    Rev Argent Microbiol; 1988; 20(1):1-15. PubMed ID: 2845476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study of the mycelial carbohydrates of Penicillium chrysogenum and of its inactive mutant].
    Nikol'skiĭ LM; Levitov MM
    Mikrobiologiia; 1975; 44(5):911-7. PubMed ID: 813089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-sulfurylase from Penicillium chrysogenum. I. Purification and characterization.
    Tweedie JW; Segel IH
    Prep Biochem; 1971; 1(2):91-117. PubMed ID: 5005722
    [No Abstract]   [Full Text] [Related]  

  • 14. [STUDY OF THE MECHANISM OF ORTHOPHOSPHATE ABSORPTION BY MYCELIA OF PENICILLIUM CHRYSOGENUM].
    KULAEV IS; POLONSKII IuS; KHLEBALINA OI; CHIGIREV VS
    Biokhimiia; 1964; 29():759-73. PubMed ID: 14264925
    [No Abstract]   [Full Text] [Related]  

  • 15. Amino acid transport by the filamentous fungus Arthrobotrys conoides.
    Gupta RK; Pramer D
    J Bacteriol; 1970 Jul; 103(1):120-30. PubMed ID: 5463678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of penicillin biosynthesis by L-glutamate in penicillium chrysogenum.
    Lara F; del Carmen Mateos R; Vázquez G; Sánchez S
    Biochem Biophys Res Commun; 1982 Mar; 105(1):172-8. PubMed ID: 6124245
    [No Abstract]   [Full Text] [Related]  

  • 17. Uptake of phenoxyacetic acid by Penicillium chrysogenum.
    Eriksen SH; Jensen B; Schneider I; Kaasgaard S; Olsen J
    Appl Microbiol Biotechnol; 1995 Mar; 42(6):945-50. PubMed ID: 7766092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic amino acid transport in plasma membrane vesicles of Penicillium chrysogenum.
    Hillenga DJ; Versantvoort HJ; Driessen AJ; Konings WN
    J Bacteriol; 1996 Jul; 178(14):3991-5. PubMed ID: 8763922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Metabolic characteristics of polyphosphates and other macroergic phosphorus compounds in relation to the degree of penicillin production and growth conditions of Penicillium chrysogenum].
    Telesnina GN; Krakhmaleva IN; Arushanian AV; Sazykin IuO; Bartoshevich IuE
    Antibiot Med Biotekhnol; 1985 Jun; 30(6):419-23. PubMed ID: 2998269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP sulfurylase from Penicillium chrysogenum: is the internal level of the enzyme sufficient to account for the rate of sulfate utilization?
    Farley JR; Mayer S; Chandler CJ; Segel IH
    J Bacteriol; 1979 Jan; 137(1):350-6. PubMed ID: 104967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.