These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 4632931)

  • 21. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase.
    Curtis SJ; Epstein W
    J Bacteriol; 1975 Jun; 122(3):1189-99. PubMed ID: 1097393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization and transport of hexoses by mutant strains of Salmonella typhimurium lacking enzyme I of the phosphoenolpyruvate-dependent phosphotransferase system.
    Saier MH; Young WS; Roseman S
    J Biol Chem; 1971 Sep; 246(18):5838-40. PubMed ID: 4938041
    [No Abstract]   [Full Text] [Related]  

  • 23. [Selection and comparative study of the strain Act. noursei not producing nystatin and of the initial strain].
    Toropova EG; Egorov NS; Nugumanov BS
    Antibiotiki; 1971 Jul; 16(7):590-6. PubMed ID: 5157507
    [No Abstract]   [Full Text] [Related]  

  • 24. [Genetic localization of sucrose metabolic system mutants of Bacillus subtilis. Localization by transformation].
    Lepesant JA; Kunst F; Carayon A; Dedonder R
    C R Acad Hebd Seances Acad Sci D; 1969 Nov; 269(18):1792-4. PubMed ID: 4983497
    [No Abstract]   [Full Text] [Related]  

  • 25. Initial characterization of hexose and hexitol phosphoenolpyruvate-dependent phosphotransferases of Staphylococcus aureus.
    Friedman SA; Hays JB
    J Bacteriol; 1977 Jun; 130(3):991-9. PubMed ID: 863862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and utilization of PEP in microbial carbohydrate transport.
    Kornberg HL
    Curr Top Cell Regul; 1981; 18():313-27. PubMed ID: 6268363
    [No Abstract]   [Full Text] [Related]  

  • 27. Carbohydrate transport in Clostridium pasteurianum.
    Booth IR; Morris JG
    Biosci Rep; 1982 Jan; 2(1):47-53. PubMed ID: 6277409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucose transport in Streptococcus mutans: preparation of cytoplasmic membranes and characteristics of phosphotransferase activity.
    Schachtele CF
    J Dent Res; 1975; 54(2):330-8. PubMed ID: 1054344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Genetic localization of mutants of the sucrose metabolism system of Bacillus subtilis. Localization by transduction by means of the PBS1 phage].
    Lepesant JA; Kunst F; Carayon A; Dedonder R
    C R Acad Hebd Seances Acad Sci D; 1969 Oct; 269(17):1712-5. PubMed ID: 4982848
    [No Abstract]   [Full Text] [Related]  

  • 30. [Isolation and genetic localization of mutants of fructose metabolic system in Bacillus subtilis].
    Carayon A; Gay P; Rapoport G
    C R Acad Hebd Seances Acad Sci D; 1970 Jul; 271(2):263-6. PubMed ID: 4247408
    [No Abstract]   [Full Text] [Related]  

  • 31. A tentative mechanism for the anaerobic transport of glucose, fructose and mannose in yeast.
    SCHARFF TG; KREMER EH
    Arch Biochem Biophys; 1962 Apr; 97():192-8. PubMed ID: 14498055
    [No Abstract]   [Full Text] [Related]  

  • 32. On the gene controlling the rate of amylase production in Bacillus subtilis.
    Yuki S
    Biochem Biophys Res Commun; 1968 Apr; 31(2):182-7. PubMed ID: 4968472
    [No Abstract]   [Full Text] [Related]  

  • 33. Molecular interactions in the bacterial phosphoenolpyruvate-phosphotransferase system (PTS).
    Kundig W
    J Supramol Struct; 1974; 2(5-6):695-814. PubMed ID: 4376825
    [No Abstract]   [Full Text] [Related]  

  • 34. [Specificity of the levansucrase activity of Bacillus subtilis: clarification].
    Rapoport G; Dedonder R
    Bull Soc Chim Biol (Paris); 1966; 48(12):1311-22. PubMed ID: 4963893
    [No Abstract]   [Full Text] [Related]  

  • 35. Carbohydrate uptake by Escherichia coli.
    Kornberg HL
    J Cell Physiol; 1976 Dec; 89(4):545-9. PubMed ID: 795813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alternate pathways of D-fructose transport and metabolism in Arthrobacter pyridinolis.
    Krulwich TA; Sobel ME; Wolfson EB
    Biochem Biophys Res Commun; 1973 Jul; 53(1):258-63. PubMed ID: 4354933
    [No Abstract]   [Full Text] [Related]  

  • 37. Phosphoenolpyruvate-dependent formation of D-fructose 1-phosphate by a four-component phosphotransferase system.
    Hanson TE; Anderson RL
    Proc Natl Acad Sci U S A; 1968 Sep; 61(1):269-76. PubMed ID: 5246925
    [No Abstract]   [Full Text] [Related]  

  • 38. Presence of a third sucrose hydrolyzing enzyme in Bacillus subtilis: constitutive levanase synthesis by mutants of Bacillus subtilis Marburg 168.
    Kunst F; Steinmetz M; Lepesant JA; Dedonder R
    Biochimie; 1977; 59(3):289-92. PubMed ID: 19092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical and genetic study of D-glucitol transport and catabolism in Bacillus subtilis.
    Chalumeau H; Delobbe A; Gay P
    J Bacteriol; 1978 Jun; 134(3):920-8. PubMed ID: 149113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon.
    Martin-Verstraete I; Débarbouillé M; Klier A; Rapoport G
    J Mol Biol; 1990 Aug; 214(3):657-71. PubMed ID: 2117666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.