These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 4633927)

  • 1. [Changes in ruminal juice dehydrogenase activity in bovine acidosis ingestae ruminis].
    Jagos P; Hofírek B; Nsiete P
    Vet Med (Praha); 1973 Jan; 18(1):1-7. PubMed ID: 4633927
    [No Abstract]   [Full Text] [Related]  

  • 2. [Technic for the quantitative determination of reduction activity (dehydrogenase activity) in the ruminal juice of cattle based on the use of triphenyltetrazoliumchloride (TTC)].
    Hofírek B; Jagos P
    Vet Med (Praha); 1973 Jan; 18(1):9-16. PubMed ID: 4633933
    [No Abstract]   [Full Text] [Related]  

  • 3. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook.
    Nagaraja TG; Titgemeyer EC
    J Dairy Sci; 2007 Jun; 90 Suppl 1():E17-38. PubMed ID: 17517750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Activity of dehydrogenases in ruminal fluid of clinically healthy sheep].
    Jagos P; Hofírek B; Jurajdová J; Peroutková Z
    Vet Med (Praha); 1973 Jun; 18(6):359-63. PubMed ID: 4199840
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of monensin on ruminal forage degradability and total tract diet digestibility in lactating dairy cows during grain-induced subacute ruminal acidosis.
    Osborne JK; Mutsvangwa T; Alzahal O; Duffield TF; Bagg R; Dick P; Vessie G; McBride BW
    J Dairy Sci; 2004 Jun; 87(6):1840-7. PubMed ID: 15453500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows.
    Chung YH; Walker ND; McGinn SM; Beauchemin KA
    J Dairy Sci; 2011 May; 94(5):2431-9. PubMed ID: 21524535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Systemic effects of ruminal acidosis following ruminal drinking in dairy calves. A retrospective analysis of 293 cases].
    Gentile A; Rademacher G; Seemann G; Klee W
    Tierarztl Prax Ausg G Grosstiere Nutztiere; 1998 Jul; 26(4):205-9. PubMed ID: 9710922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruminal acidosis in dairy cows.
    Raphael S; Carty H
    Vet Rec; 2013 Aug; 173(8):200. PubMed ID: 23997168
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of acarbose on milk yield and composition in early-lactation dairy cattle fed a ration to induce subacute ruminal acidosis.
    McLaughlin CL; Thompson A; Greenwood K; Sherington J; Bruce C
    J Dairy Sci; 2009 Sep; 92(9):4481-8. PubMed ID: 19700709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Ruminal acidosis complex--new observations and experiences (2). A review].
    Dirksen G
    Tierarztl Prax; 1986; 14(1):23-33. PubMed ID: 2872733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Chronic wasting, a consequence of subacute ruminal acidosis?].
    Peeters CA; Joren A; Brand A
    Tijdschr Diergeneeskd; 2001 Mar; 126(6):226-9. PubMed ID: 11285645
    [No Abstract]   [Full Text] [Related]  

  • 12. Grain-based versus alfalfa-based subacute ruminal acidosis induction experiments: Similarities and differences between changes in milk fatty acids.
    Colman E; Khafipour E; Vlaeminck B; De Baets B; Plaizier JC; Fievez V
    J Dairy Sci; 2013 Jul; 96(7):4100-11. PubMed ID: 23628250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short communication: grain-induced subacute ruminal acidosis is associated with the differential expression of insulin-like growth factor-binding proteins in rumen papillae of lactating dairy cattle.
    Steele MA; Alzahal O; Walpole ME; McBride BW
    J Dairy Sci; 2012 Oct; 95(10):6072-6. PubMed ID: 22921628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of ammonia poisoning from urea on the properties of ruminal liquor in ruminants].
    Zapletal O; Hofírek B
    Vet Med (Praha); 1971; 16(6):367-75. PubMed ID: 5006069
    [No Abstract]   [Full Text] [Related]  

  • 15. Serum and rumen liquor transaminase activity and its significance in digestive disorders in cattle.
    Singh U; Misra SK; Panda JN
    Indian J Exp Biol; 1973 May; 11(3):234-5. PubMed ID: 4782627
    [No Abstract]   [Full Text] [Related]  

  • 16. Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows.
    Gozho GN; Krause DO; Plaizier JC
    J Dairy Sci; 2007 Feb; 90(2):856-66. PubMed ID: 17235162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rumen lipopolysaccharide and inflammation during grain adaptation and subacute ruminal acidosis in steers.
    Gozho GN; Krause DO; Plaizier JC
    J Dairy Sci; 2006 Nov; 89(11):4404-13. PubMed ID: 17033028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altering physically effective fiber intake through forage proportion and particle length: chewing and ruminal pH.
    Yang WZ; Beauchemin KA
    J Dairy Sci; 2007 Jun; 90(6):2826-38. PubMed ID: 17517723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rumen epithelial adaptation to ruminal acidosis in lactating cattle involves the coordinated expression of insulin-like growth factor-binding proteins and a cholesterolgenic enzyme.
    Steele MA; Dionissopoulos L; AlZahal O; Doelman J; McBride BW
    J Dairy Sci; 2012 Jan; 95(1):318-27. PubMed ID: 22192211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subacute ruminal acidosis (SARA) challenge, ruminal condition and cellular immunity in cattle.
    Sato S
    Jpn J Vet Res; 2015 Feb; 63 Suppl 1():S25-36. PubMed ID: 25872324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.