These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 4634835)
1. The osmotic properties of sulphoethyl-sephadex. A model for cartilage. Ogston AG; Wells JD Biochem J; 1972 Jul; 128(3):685-90. PubMed ID: 4634835 [TBL] [Abstract][Full Text] [Related]
2. The osmotic behaviour of Sephadex and its effects on chromatography. Edmond E; Farquhar S; Dunstone JR; Ogston AG Biochem J; 1968 Aug; 108(5):755-63. PubMed ID: 5691752 [TBL] [Abstract][Full Text] [Related]
3. Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature. Chahine NO; Chen FH; Hung CT; Ateshian GA Biophys J; 2005 Sep; 89(3):1543-50. PubMed ID: 15980166 [TBL] [Abstract][Full Text] [Related]
4. A model of ideal elastomeric gels for polyelectrolyte gels. Li J; Suo Z; Vlassak JJ Soft Matter; 2014 Apr; 10(15):2582-90. PubMed ID: 24647731 [TBL] [Abstract][Full Text] [Related]
5. A sensitive and accurate gel osmometer. Ogston AG; Preston BN Biochem J; 1973 Apr; 131(4):843-50. PubMed ID: 4352915 [TBL] [Abstract][Full Text] [Related]
6. Salt activity and osmotic pressure in connective tissue. I. A study of solutions of dextran sulphate as a model system. Wells JD Proc R Soc Lond B Biol Sci; 1973 Jul; 183(1073):399-419. PubMed ID: 4147098 [No Abstract] [Full Text] [Related]
7. A triphasic analysis of negative osmotic flows through charged hydrated soft tissues. Gu WY; Lai WM; Mow VC J Biomech; 1997 Jan; 30(1):71-8. PubMed ID: 8970927 [TBL] [Abstract][Full Text] [Related]
9. The incorporation of gel pressure into the irreversible thermodynamic equation of fluid flow in order to explain biological tissue swelling. Hodson S; Earlam R J Theor Biol; 1993 Jul; 163(2):173-80. PubMed ID: 8246502 [TBL] [Abstract][Full Text] [Related]
10. Osmotic-driven mass transport of water: impact on the adhesiveness of hydrophilic polymers. Borde A; Bergstrand A; Gunnarsson C; Larsson A J Colloid Interface Sci; 2010 Jan; 341(2):255-60. PubMed ID: 19880130 [TBL] [Abstract][Full Text] [Related]
11. Selectivity and Mass Transfer Limitations in Pressure-Retarded Osmosis at High Concentrations and Increased Operating Pressures. Straub AP; Osuji CO; Cath TY; Elimelech M Environ Sci Technol; 2015 Oct; 49(20):12551-9. PubMed ID: 26393282 [TBL] [Abstract][Full Text] [Related]
12. Model connective-tissue systems. A study of polyion-mobile ion and of excluded-volume interactions of proteoglycans. Comper WD; Preston BN Biochem J; 1974 Oct; 143(1):1-9. PubMed ID: 4282705 [TBL] [Abstract][Full Text] [Related]
14. Swelling and collapse of polyelectrolyte gels in equilibrium with monovalent and divalent electrolyte solutions. Yin DW; Olvera de la Cruz M; de Pablo JJ J Chem Phys; 2009 Nov; 131(19):194907. PubMed ID: 19929076 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanisms of osmosis. Kiil F Am J Physiol; 1989 Apr; 256(4 Pt 2):R801-8. PubMed ID: 2705569 [TBL] [Abstract][Full Text] [Related]
16. Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation. Kim YC; Kim Y; Oh D; Lee KH Environ Sci Technol; 2013 Mar; 47(6):2966-73. PubMed ID: 23398240 [TBL] [Abstract][Full Text] [Related]
17. Poly(ethylene glycol)-induced shrinkage of Sephadex gel. A model system for quantitative analysis of osmoelastic coupling. Ito T; Yamazaki M; Ohnishi S Biophys J; 1989 Oct; 56(4):707-11. PubMed ID: 2479421 [TBL] [Abstract][Full Text] [Related]
18. Application of the osmotic virial equation in cryobiology. Prickett RC; Elliott JA; McGann LE Cryobiology; 2010 Feb; 60(1):30-42. PubMed ID: 19665010 [TBL] [Abstract][Full Text] [Related]
19. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants. Hammel HT; Schlegel WM Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460 [TBL] [Abstract][Full Text] [Related]