These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 4634854)

  • 21. The regulation of naphthalene metabolism in pseudomonads.
    Shamsuzzaman KM; Barnsley EA
    Biochem Biophys Res Commun; 1974 Sep; 60(2):582-9. PubMed ID: 4423716
    [No Abstract]   [Full Text] [Related]  

  • 22. Catechol oxygenase induction in Pseudomonas aeruginosa.
    Farr DR; Cain RB
    Biochem J; 1968 Feb; 106(4):879-85. PubMed ID: 4966085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Naphthalene oxidation by a Pseudomonas putida strain carrying a mutant plasmid].
    Skriabin GK; Starovoĭtov II; Borisoglebskaia AN; Borodin AM
    Mikrobiologiia; 1978; 47(2):273-7. PubMed ID: 661635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites.
    Park W; Jeon CO; Cadillo H; DeRito C; Madsen EL
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):429-35. PubMed ID: 12928756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol.
    Dorn E; Knackmuss HJ
    Biochem J; 1978 Jul; 174(1):85-94. PubMed ID: 697766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Stability of the NPL-1 and NPL-41 plasmids of naphthalene biodegradation in Pseudomonas putida populations in continuous culture].
    Boronin AM; Filonov AE; Balakshina VV; Kulakova AN
    Mikrobiologiia; 1985; 54(4):610-5. PubMed ID: 4058326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad.
    Dorn E; Knackmuss HJ
    Biochem J; 1978 Jul; 174(1):73-84. PubMed ID: 697765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Plasmids pBS2 and pBS3 controlling naphthalene oxidation by bacteria of the genus Pseudomonas].
    Voronin AM; Kochetkov V; Starovoitov II; Skriabin GK
    Dokl Akad Nauk SSSR; 1977 Dec; 237(5):1205-8. PubMed ID: 590083
    [No Abstract]   [Full Text] [Related]  

  • 29. Degradation of 2-methylnaphthalene by Pseudomonas sp. strain NGK1.
    Sharanagouda U; Karegoudar TB
    Curr Microbiol; 2001 Dec; 43(6):440-3. PubMed ID: 11685513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Naphtho[1,2- b]thiophene degradation by Pseudomonas sp. HKT554: involvement of naphthalene dioxygenase.
    Matsui T; Tanaka Y; Maruhashi K; Kurane R
    Curr Microbiol; 2003 Jan; 46(1):39-42. PubMed ID: 12432462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate binding site of naphthalene 1,2-dioxygenase: functional implications of indole binding.
    Carredano E; Karlsson A; Kauppi B; Choudhury D; Parales RE; Parales JV; Lee K; Gibson DT; Eklund H; Ramaswamy S
    J Mol Biol; 2000 Feb; 296(2):701-12. PubMed ID: 10669618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The metabolism of protocatechuate by Pseudomonas testosteroni.
    Dagley S; Geary PJ; Wood JM
    Biochem J; 1968 Oct; 109(4):559-68. PubMed ID: 5683506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and nucleotide sequence analysis of xylE gene responsible for meta-cleavage of 4-chlorocatechol from Pseudomonas sp. S-47.
    Noh SJ; Kim Y; Min KH; Karegoudar TB; Kim CK
    Mol Cells; 2000 Aug; 10(4):475-9. PubMed ID: 10987148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Pseudomonas putida plasmid controlling the initial stages of naphthalene oxidation].
    Boronin AM; Starovoĭtov II; Borisoglebskaia AN; Skriabin GK
    Dokl Akad Nauk SSSR; 1976; 228(4):962-5. PubMed ID: 949929
    [No Abstract]   [Full Text] [Related]  

  • 35. Metabolism of acenaphthylene via 1,2-dihydroxynaphthalene and catechol by Stenotrophomonas sp. RMSK.
    Nayak AS; Veeranagouda Y; Lee K; Karegoudar TB
    Biodegradation; 2009 Nov; 20(6):837-43. PubMed ID: 19543983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolism of 3-chlorobenzoate by a Pseudomonas (diff) spp.
    Vora KA; Modi VV
    Indian J Exp Biol; 1989 Nov; 27(11):967-71. PubMed ID: 2620936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined action of a bacterial monooxygenase and a fungal laccase for the biodegradation of mono- and poly-aromatic hydrocarbons.
    Gullotto A; Branciamore S; Duchi I; Caño MF; Randazzo D; Tilli S; Giardina P; Sannia G; Scozzafava A; Briganti F
    Bioresour Technol; 2008 Nov; 99(17):8353-9. PubMed ID: 18407494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. cis-cis-Muconate, the product inducer of catechol 1,2-oxygenase in Pseudomonas aeruginosa.
    Bird JA; Cain RB
    Biochem J; 1968 Sep; 109(3):479-81. PubMed ID: 4971877
    [No Abstract]   [Full Text] [Related]  

  • 39. THE EFFECTS OF ULTRAVIOLET IRRADIATION ON INDUCED FORMATION OF CATECHOL OXYGENASE IN PSEUDOMONAS EFFUSA.
    ATSUTA J; NOZU K; YAMAGISHI H; HONJO I
    J Biochem; 1964 Aug; 56():192-4. PubMed ID: 14228490
    [No Abstract]   [Full Text] [Related]  

  • 40. Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase.
    Horvath RS
    Biochem J; 1970 Oct; 119(5):871-6. PubMed ID: 5492853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.