These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 4634867)

  • 1. Study of the interaction of DNA and acridine orange by various optical methods.
    Fredericq E; Houssier C
    Biopolymers; 1972; 11(11):2281-308. PubMed ID: 4634867
    [No Abstract]   [Full Text] [Related]  

  • 2. Differences in the red fluorescence of acridine orange bound to single-stranded RNA and DNA.
    Ichimura S
    Biopolymers; 1975 May; 14(5):1033-47. PubMed ID: 1156642
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of spermine conjugation on the interaction of acridine with alternating purine-pyrimidine oligodeoxyribonucleotides studied by CD, fluorescence and absorption spectroscopies.
    Pérez-Flores L; Ruiz-Chica AJ; Delcros JG; Sánchez-Jiménez FM; Ramírez FJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1089-96. PubMed ID: 17644401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on poly(L-lysine50, L-tyrosine50)-DNA interaction.
    Santella RM; Li HJ
    Biopolymers; 1974; 13(9):1909-26. PubMed ID: 4415944
    [No Abstract]   [Full Text] [Related]  

  • 5. Fluorospectrophotometric characterization of nucleic acid-acridine orange complexes. II. Interaction of nucleic acids or nucleoproteins and acridine orange.
    Yamagata S; Minamishima Y; Morisawa S
    Osaka City Med J; 1972; 18(1):85-94. PubMed ID: 4125121
    [No Abstract]   [Full Text] [Related]  

  • 6. Antitumor polycyclic acridines. Part 16. Triplex DNA as a target for DNA-binding polycyclic acridine derivatives.
    Missailidis S; Modi C; Trapani V; Laughton CA; Stevens MF
    Oncol Res; 2005; 15(2):95-105. PubMed ID: 16119007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of intercalative and minor groove binding ligands with triplex poly(dA).[poly(dT)]2 and with duplex poly(dA).poly(dT) and poly[d(A-T)]2 studied by CD, LD, and normal absorption.
    Kim HK; Kim JM; Kim SK; Rodger A; Nordén B
    Biochemistry; 1996 Jan; 35(4):1187-94. PubMed ID: 8573573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of interactions of DNA and acridine orange by fluorescence].
    Fredericq E
    Arch Int Physiol Biochim; 1971 Oct; 79(4):832-3. PubMed ID: 4110233
    [No Abstract]   [Full Text] [Related]  

  • 9. Template specificity of DNA binding by nogalamycin and its analogs utilizing competitive fluorescence polarization.
    Richardson CL; Grant AD; Schpok SL; Krueger WC; Li LH
    Cancer Res; 1981 Jun; 41(6):2235-40. PubMed ID: 7237423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The determination of native DNA in the mixture with denatured one by the fluorescence of acridine orange in the complex with DNA. I. Studies of green fluorescence intensity].
    Faddeeva MD
    Tsitologiia; 1969 Jan; 11(1):56-63. PubMed ID: 5806293
    [No Abstract]   [Full Text] [Related]  

  • 11. Induced circular dichroism of acridine orange bound to double-stranded RNA and transfer RNA.
    Zama M; Ichimura S
    Biopolymers; 1976 Sep; 15(9):1693-9. PubMed ID: 963258
    [No Abstract]   [Full Text] [Related]  

  • 12. [Correlation between DNA melting temperature and the temperature variation of nuclear luminescence spectrum in plant cells supravitally stained with acridine orange].
    Ezerzha AA; Kulikov BN; Ovchinnikova MI; Mochalkin AI
    Tsitologiia; 1971 Aug; 13(8):1009-13. PubMed ID: 4107346
    [No Abstract]   [Full Text] [Related]  

  • 13. [The determination of native DNA in the mixture with denatured one by the fluorescence of acridine orange in the complex with DNA. II. The 2-wave method].
    Barskiĭ IIa; Papaian GV; Faddeeva MD
    Tsitologiia; 1969 Jan; 11(1):64-70. PubMed ID: 5806294
    [No Abstract]   [Full Text] [Related]  

  • 14. On the various types of circular dichroism induced on acridine orange bound to poly(S-carboxymethyl-L-cysteine).
    Imae T; Ikeda S
    Biopolymers; 1975 Jun; 14(6):1213-21. PubMed ID: 240463
    [No Abstract]   [Full Text] [Related]  

  • 15. Fluorescence enhancement of bis-acridine orange peptide, BAO, upon binding to double stranded DNA.
    Mizuki K; Sakakibara Y; Ueyama H; Nojima T; Waki M; Takenaka S
    Org Biomol Chem; 2005 Feb; 3(4):578-80. PubMed ID: 15703790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circular dichroism and structure of the complex of acridine orange with polyp(L-glutamic acid).
    Imae T; Ikeda S
    Biopolymers; 1976 Sep; 15(9):655-67. PubMed ID: 963270
    [No Abstract]   [Full Text] [Related]  

  • 17. Fluorospectrophotometric characterization of nucleic acid-acridine orange complexes. I. Metachromatic behavior of acridine orange (concentration effect).
    Yamagata S; Minamishima Y; Morisawa S
    Osaka City Med J; 1972; 18(1):77-83. PubMed ID: 4125120
    [No Abstract]   [Full Text] [Related]  

  • 18. Critical effect of dye concentration on acridine orange fluorescence of fixed thymocytes.
    Traganos F; Adams LR; Kamentsky LA; Melamed MR
    Acta Cytol; 1972; 16(4):281-3. PubMed ID: 4113842
    [No Abstract]   [Full Text] [Related]  

  • 19. Exploring base-pair-specific optical properties of the DNA stain thiazole orange.
    Jarikote DV; Krebs N; Tannert S; Röder B; Seitz O
    Chemistry; 2007; 13(1):300-10. PubMed ID: 17024704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic properties of complexes of acridine orange with glycosaminoglycans II. Aggregated complexes-evidence for long-range order.
    Salter MK; Abrahamson EW; Rippon WB
    Biopolymers; 1976 Jul; 15(7):1251-65. PubMed ID: 132973
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.