These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
749 related articles for article (PubMed ID: 4637626)
1. Further evidence for a potassium-like action of lithium ions on sodium efflux in frog skeletal muscle. Beaugé LA; Ortiz O J Physiol; 1972 Nov; 226(3):675-97. PubMed ID: 4637626 [TBL] [Abstract][Full Text] [Related]
2. The interaction of lithium ions with the sodium-potassium pump in frog skeletal muscle. Beaugé L J Physiol; 1975 Mar; 246(2):397-420. PubMed ID: 1079873 [TBL] [Abstract][Full Text] [Related]
3. The dual effect of lithium ions on sodium efflux in skeletal muscle. Beaugé LA; Sjodin RA J Gen Physiol; 1968 Sep; 52(3):408-23. PubMed ID: 5673301 [TBL] [Abstract][Full Text] [Related]
4. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. Baker PF; Blaustein MP; Keynes RD; Manil J; Shaw TI; Steinhardt RA J Physiol; 1969 Feb; 200(2):459-96. PubMed ID: 5812424 [TBL] [Abstract][Full Text] [Related]
5. Fractionation of sodium effux in frog sartorius muscles by strophanthidin and removal of external sodium. Horowicz P; Taylor JW; Waggoner DM J Gen Physiol; 1970 Mar; 55(3):401-25. PubMed ID: 5315424 [TBL] [Abstract][Full Text] [Related]
6. The components of the sodium efflux in frog muscle. Keynes RD; Steinhardt RA J Physiol; 1968 Oct; 198(3):581-99. PubMed ID: 5685289 [TBL] [Abstract][Full Text] [Related]
7. Activation by sanguinarine of active sodium efflux from frog skeletal muscle in the presence of ouabain. Moore RD; Rabovsky JL J Physiol; 1979 Oct; 295():1-20. PubMed ID: 230333 [TBL] [Abstract][Full Text] [Related]
8. Strophanthidin-sensitive components of potassium and sodium movements in skeletal muscle as influenced by the internal sodium concentration. Sjodin RA; Beaugé LA J Gen Physiol; 1968 Sep; 52(3):389-407. PubMed ID: 5673300 [TBL] [Abstract][Full Text] [Related]
9. An analysis of the leakages of sodium ions into and potassium ions out of striated muscle cells. Sjodin RA; Beaugé LA J Gen Physiol; 1973 Feb; 61(2):222-50. PubMed ID: 4540059 [TBL] [Abstract][Full Text] [Related]
10. The effect of insulin on the transport of sodium and potassium in rat soleus muscle. Clausen T; Kohn PG J Physiol; 1977 Feb; 265(1):19-42. PubMed ID: 850160 [TBL] [Abstract][Full Text] [Related]
11. The influence of external caesium ions on potassium efflux in frog skeletal muscle. Beaugé LA; Medici A; Sjodin RA J Physiol; 1973 Jan; 228(1):1-11. PubMed ID: 4539863 [TBL] [Abstract][Full Text] [Related]
12. The influence of calcium on sodium efflux in squid axons. Baker PF; Blaustein MP; Hodgkin AL; Steinhardt RA J Physiol; 1969 Feb; 200(2):431-58. PubMed ID: 5764407 [TBL] [Abstract][Full Text] [Related]
13. Influence of the membrane stabilizer diphenylhydantoin on potassium and sodium movements in skeletal muscle. O'Donnell JM; Kovács T; Szábó B Pflugers Arch; 1975 Jul; 358(3):275-88. PubMed ID: 1081681 [TBL] [Abstract][Full Text] [Related]
14. Effect of insulin upon the sodium pump in frog skeletal muscle. Moore RD J Physiol; 1973 Jul; 232(1):23-45. PubMed ID: 4542575 [TBL] [Abstract][Full Text] [Related]
15. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell. Wiley JS; Cooper RA J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437 [TBL] [Abstract][Full Text] [Related]
16. Movements of labelled sodium ions in isolated rat superior cervical ganglia. Brown DA; Scholfield CN J Physiol; 1974 Oct; 242(2):321-51. PubMed ID: 4455816 [TBL] [Abstract][Full Text] [Related]
17. [Heavy water inhibition of alkali cation transport across the muscle membrane. II. A comparison of the action of D20 and ouabain on the sodium efflux and rubidium influx in magnesium media]. Vereninov AA; Toropova FV; Ivakhniuk IS Tsitologiia; 1985 Dec; 27(12):1359-66. PubMed ID: 3003982 [TBL] [Abstract][Full Text] [Related]
18. Microcalorimetric determination of energy expenditure due to active sodium-potassium transport in the soleus muscle and brown adipose tissue of the rat. Chinet A; Clausen T; Girardier L J Physiol; 1977 Feb; 265(1):43-61. PubMed ID: 850182 [TBL] [Abstract][Full Text] [Related]
19. The effects of caffeine on sodium transport, membrane potential, mechanical tension and ultrastructure in barnacle muscle fibres. Bittar EE; Hift H; Huddart H; Tong E J Physiol; 1974 Oct; 242(1):1-34. PubMed ID: 4373569 [TBL] [Abstract][Full Text] [Related]
20. Lithium transport pathways in human red blood cells. Pandey GN; Sarkadi B; Haas M; Gunn RB; Davis JM; Tosteson DC J Gen Physiol; 1978 Aug; 72(2):233-47. PubMed ID: 690597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]