These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The production and testing of double-barreled pH glass microelectrodes for measurement of intratubular pH. Carter NW Yale J Biol Med; 1972; 45(3-4):349-55. PubMed ID: 4638657 [No Abstract] [Full Text] [Related]
3. Measurement of tubular fluid bicarbonate concentration by the cuvette-type glass micro pH electrode. Levine DZ Yale J Biol Med; 1972; 45(3-4):368-72. PubMed ID: 4638659 [No Abstract] [Full Text] [Related]
4. A MICROPUNCTURE EVALUATION OF RENAL AMMONIA EXCRETION IN THE RAT. HAYES CP; MAYSON JS; OWEN EE; ROBINSON RR Am J Physiol; 1964 Jul; 207():77-83. PubMed ID: 14193612 [No Abstract] [Full Text] [Related]
5. Progress in microelectrode techniques for kidney tubules. Frömter E Yale J Biol Med; 1972; 45(3-4):414-25. PubMed ID: 4638663 [No Abstract] [Full Text] [Related]
7. Physicochemical characteristics of antimony microelectrode with special reference to selection of standard buffers. Matsumura Y; Satake N; Fujimoto M Jpn J Physiol; 1980; 30(4):509-28. PubMed ID: 6970290 [TBL] [Abstract][Full Text] [Related]
8. Kinetics analysis of renal tubular acidification by antimony microelectrodes. Malnic G; Aires MM; Cassola AC Adv Exp Med Biol; 1974; 50(0):89-108. PubMed ID: 4440552 [No Abstract] [Full Text] [Related]
9. Acidification in the distal tubule of the Amphiuma kidney. Persson BE; Persson AE Acta Physiol Scand; 1983 Mar; 117(3):343-9. PubMed ID: 6880793 [TBL] [Abstract][Full Text] [Related]
10. Re-evaluation of microelectrode methodology for the in vitro determination of pH and bicarbonate concentration. Puschett JB; Zurbach PE Kidney Int; 1974 Aug; 6(2):81-91. PubMed ID: 4425303 [No Abstract] [Full Text] [Related]
11. Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode. Vieira FL; Malnic G Am J Physiol; 1968 Apr; 214(4):710-8. PubMed ID: 4966812 [No Abstract] [Full Text] [Related]
12. [MICROPUNCTURE EXPERIMENTS ON THE BEHAVIOR OF THE PAH CONCENTRATION IN THE VASA RECATA-BLOOD OF GOLDEN HAMSTER KIDNEY]. SCHNERMANN J; THURAU K Pflugers Arch Gesamte Physiol Menschen Tiere; 1965 Mar; 283():171-81. PubMed ID: 14303705 [No Abstract] [Full Text] [Related]
14. Potassium-specific ion-exchanger microelectrodes to measure K + activity in the renal distal tubule. Writht FS; McDougal WS Yale J Biol Med; 1972; 45(3-4):373-83. PubMed ID: 4638660 [No Abstract] [Full Text] [Related]
15. [Physiological study of the inner layer of the renal medulla--evaluation of permeability of water and solutes through the kidney tubules and blood vessels by the micropuncture method]. Teraoka M; Sakai F Saishin Igaku; 1968 Dec; 23(12):2564-71. PubMed ID: 5712919 [No Abstract] [Full Text] [Related]
16. General properties of antimony microelectrode in comparison with glass microelectrode for pH measurement. Fujimoto M; Matsumura Y; Satake N Jpn J Physiol; 1980; 30(4):491-508. PubMed ID: 6970289 [TBL] [Abstract][Full Text] [Related]
17. Variation in electrical resistance along length of rat proximal convoluted tubule. Seely JF Am J Physiol; 1973 Jul; 225(1):48-57. PubMed ID: 4714410 [No Abstract] [Full Text] [Related]
18. Methodological aspects of filtrate determination by the micropuncture technique. Schnermann J Yale J Biol Med; 1972; 45(3-4):211-6. PubMed ID: 4638642 [No Abstract] [Full Text] [Related]
19. Behavior of the antimony microelectrode in different buffer solutions. Lopes AG; de Mello-Aires M; Malnic G Braz J Med Biol Res; 1981 Apr; 14(1):29-36. PubMed ID: 7306721 [No Abstract] [Full Text] [Related]
20. [Physiology of diuretics--study of action mechanism of diuretics by micropuncture of the kidney]. Sugino N; Yamagata A Nihon Rinsho; 1970 Apr; 28(4):1313-8. PubMed ID: 5464212 [No Abstract] [Full Text] [Related] [Next] [New Search]