These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 4638757)

  • 1. Plant sterol metabolism. Studies on the substrate specificity of an enzyme capable of opening the cyclopropane ring of cycloeucalenol.
    Heintz R; Bimpson T; Benveniste P
    Biochem Biophys Res Commun; 1972 Nov; 49(3):820-6. PubMed ID: 4638757
    [No Abstract]   [Full Text] [Related]  

  • 2. Plant sterol metabolism. Enzymatic cleavage of the 9beta, 19beta-cyclopropane ring of cyclopropyl sterols in bramble tissue cultures.
    Heintz R; Benveniste P
    J Biol Chem; 1974 Jul; 249(13):4267-74. PubMed ID: 4369016
    [No Abstract]   [Full Text] [Related]  

  • 3. Evidence for the presence of an enzyme capable of opening the cyclopropane ring of cycloeucalenol.
    Heintz R; Benveniste P; Bimpson T
    Biochem Biophys Res Commun; 1972 Jan; 46(2):766-72. PubMed ID: 5057906
    [No Abstract]   [Full Text] [Related]  

  • 4. The conversion of [14C]cycloartenol and [14C)lanosterol into phytosterols by cultures of Nicotiana tabacum.
    Hewlins MJ; Ehrhardt JD; Hirth L; Ourisson G
    Eur J Biochem; 1969 Mar; 8(2):184-8. PubMed ID: 4889176
    [No Abstract]   [Full Text] [Related]  

  • 5. S-adenosyl-L-methionine-cycloartenol methyltransferase activity in cell-free systems from Trebouxia sp. and Scenedesmus obliquus.
    Wojciechowski ZA; Goad LJ; Goodwin TW
    Biochem J; 1973 Oct; 136(2):405-12. PubMed ID: 4774402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant sterol metabolism. Demonstration and identification of a biosynthetic intermediate between farnesyl PP and squalene in a higher plant.
    Heintz R; Benveniste P; Robinson WH; Coates RM
    Biochem Biophys Res Commun; 1972 Dec; 49(6):1547-53. PubMed ID: 4344813
    [No Abstract]   [Full Text] [Related]  

  • 7. [D-glucosylation of phytosterols and acylation of steryl-D-glucosides in the presence of plant enzymes].
    Péaud-Lenoël C; Axelos M
    Carbohydr Res; 1972 Oct; 24(2):247-62. PubMed ID: 4667562
    [No Abstract]   [Full Text] [Related]  

  • 8. Influence of steroid distribution between microsomes and soluble fraction on steroid metabolism by microsomal enzymes.
    Matsumoto K; Samuels LT
    Endocrinology; 1969 Sep; 85(3):402-9. PubMed ID: 5793023
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on the mechanism of estrogen biosynthesis. 8. The development of inhibitors of the enzyme system in human placenta.
    Schwarzel WC; Kruggel WG; Brodie HJ
    Endocrinology; 1973 Mar; 92(3):866-80. PubMed ID: 4267111
    [No Abstract]   [Full Text] [Related]  

  • 10. Some properties of the microsomal 2,3-oxidosqualene sterol cyclase.
    Yamamoto S; Lin K; Bloch K
    Proc Natl Acad Sci U S A; 1969 May; 63(1):110-7. PubMed ID: 5257956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on phytosterol biosynthesis. The presence of 4-alpha,14-alpha-dimethyl-delta-8,24(28)-ergostadien-3-beta-ol in grapefruit peel and its co-occurrece with cycloeucalenol in higher plant tissues.
    Goad LJ; Williams BL; Goodwin TW
    Eur J Biochem; 1967 Dec; 3(2):232-6. PubMed ID: 4295054
    [No Abstract]   [Full Text] [Related]  

  • 12. Plant cyclopropylsterol-cycloisomerase: key amino acids affecting activity and substrate specificity.
    Rahier A; Karst F
    Biochem J; 2014 Apr; 459(2):289-99. PubMed ID: 24483781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sterol biosynthesis: strong inhibition of maize delta 5,7-sterol delta 7-reductase by novel 6-aza-B-homosteroids and other analogs of a presumptive carbocationic intermediate of the reduction reaction.
    Rahier A; Taton M
    Biochemistry; 1996 Jun; 35(22):7069-76. PubMed ID: 8679532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymic modification of cyclopropane sterols in yeast cell-free system.
    Anding C; Parks LW; Ourisson G
    Eur J Biochem; 1974 Apr; 43(3):459-63. PubMed ID: 4598751
    [No Abstract]   [Full Text] [Related]  

  • 15. The acylation of isomeric monoacyl phosphatidylcholines.
    Van Den Bosch H; Van Golde MG; Slotboom AJ; Van Deenen LL
    Biochim Biophys Acta; 1968 Jul; 152(4):694-703. PubMed ID: 5660084
    [No Abstract]   [Full Text] [Related]  

  • 16. Oxidative C4-demethylation of 24-methylene cycloartanol by a cyanide-sensitive enzymatic system from higher plant microsomes.
    Pascal S; Taton M; Rahier A
    Biochem Biophys Res Commun; 1990 Oct; 172(1):98-106. PubMed ID: 2222486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxylation of geraniol and nerol by a monooxygenase from Vinca rosea.
    Meehan TD; Coscia CJ
    Biochem Biophys Res Commun; 1973 Aug; 53(4):1043-8. PubMed ID: 4147883
    [No Abstract]   [Full Text] [Related]  

  • 18. Paclobutrazol inhibition of sterol biosynthesis in a cell suspension culture and evidence of an essential role for 24-ethylsterol in plant cell division.
    Haughan PA; Lenton JR; Goad LJ
    Biochem Biophys Res Commun; 1987 Jul; 146(2):510-6. PubMed ID: 3619893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biocleavage of isomeric glyceryl ethers by soluble liver enzymes in a variety of species.
    Pfleger RC; Piantadosi C; Snyder F
    Biochim Biophys Acta; 1967 Dec; 144(3):633-48. PubMed ID: 4383918
    [No Abstract]   [Full Text] [Related]  

  • 20. Phytosterols in normal and tumor-bearing rats.
    Nes WR; Thampi NS; Lin JT
    Cancer Res; 1972 Jun; 32(6):1264-6. PubMed ID: 4337888
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.