BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 4639818)

  • 1. Enzymatic isomerization of oleic acid to trans- 10 -octadecenoic acid.
    Mortimer CE; Niehaus WG
    Biochem Biophys Res Commun; 1972 Dec; 49(6):1650-6. PubMed ID: 4639818
    [No Abstract]   [Full Text] [Related]  

  • 2. Enzymatic interconversion of oleic acid, 10-hydroxyoctadecanoic acid, and trans-delta 10-octadecenoic acid. Reaction pathway and stereospecificity.
    Mortimer CE; Niehaus WG
    J Biol Chem; 1974 May; 249(9):2833-42. PubMed ID: 4828323
    [No Abstract]   [Full Text] [Related]  

  • 3. Structure and biosynthesis of the hydroxy fatty acids of cutin in Vicia faba leaves.
    Kolattukudy PE; Walton TJ
    Biochemistry; 1972 May; 11(10):1897-907. PubMed ID: 5025632
    [No Abstract]   [Full Text] [Related]  

  • 4. [Unsaturated fatty acid metabolism in Staphylococcus aureus].
    Fritsche D
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):443-5. PubMed ID: 4145621
    [No Abstract]   [Full Text] [Related]  

  • 5. Biosynthesis of a lipid polymer, cutin: the structural component of plant cuticle.
    Kolattukudy PE
    Biochem Biophys Res Commun; 1970 Oct; 41(2):299-305. PubMed ID: 5518162
    [No Abstract]   [Full Text] [Related]  

  • 6. Biohydrogenation of unsaturated fatty acids. VI. Source of hydrogen and stereospecificity of reduction.
    Rosenfeld IS; Tove SB
    J Biol Chem; 1971 Aug; 246(16):5025-30. PubMed ID: 5570435
    [No Abstract]   [Full Text] [Related]  

  • 7. The beta-oxidative cleavage of long-chain fatty acids in rat-liver cytoplasm.
    Fiecchi A; Galli-Kienle M; Scala A; Galli G; Paoletti R
    Eur J Biochem; 1973 Oct; 38(3):516-28. PubMed ID: 4772671
    [No Abstract]   [Full Text] [Related]  

  • 8. Lipid metabolism in the perfused chicken liver. The uptake and metabolism of oleic acid, elaidic acid, cis-vaccenic acid, trans-vaccenic acid and stearic acid.
    Bickerstaffe R; Annison EF
    Biochem J; 1970 Jul; 118(3):433-42. PubMed ID: 5472169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the cecum in maintaing 5 -steroid- and fatty acid-reducing activity of the rat intestinal microflora.
    Eyssen H; Piessens-Denef M; Parmentier G
    J Nutr; 1972 Nov; 102(11):1501-11. PubMed ID: 4563003
    [No Abstract]   [Full Text] [Related]  

  • 10. [The structure of erucic acid as related to the metabolic changes induced by it. II. Thiocyanization, trans-isomerization and hydrogenation of oleic and erucic acids].
    Turchetto E; Lorusso S
    Boll Soc Ital Biol Sper; 1974 May; 50(10):699-704. PubMed ID: 4455280
    [No Abstract]   [Full Text] [Related]  

  • 11. [Biohydrogenation of erucic acid (22:1 n-9 cis) in an "artificial rumen". II) Effect of pH, potential hydrogen donors and type of anaerobiosis].
    Borgatti AR; Trigari G
    Boll Soc Ital Biol Sper; 1979 Feb; 55(3):212-8. PubMed ID: 45245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparison of intestinal absorption in the rat of elaidic, oleic and stearic acids administered in the form of mixed triglycerides containing of 5 randomly distributed fatty acids].
    Lavoue G; Clement J
    Bull Soc Chim Biol (Paris); 1967; 49(4):379-88. PubMed ID: 6056728
    [No Abstract]   [Full Text] [Related]  

  • 13. Tritium release assay for oleic acid desaturation.
    Gurr MI; Robinson MP
    Anal Biochem; 1972 May; 47(1):146-56. PubMed ID: 5031107
    [No Abstract]   [Full Text] [Related]  

  • 14. Fat metabolism in higher plants. XLVI. Nature of the substrate and the product of oleyl coenzyme A desaturase from Carthamus tinctorius.
    Vijay IK; Stumpf PK
    J Biol Chem; 1971 May; 246(9):2910-7. PubMed ID: 5102929
    [No Abstract]   [Full Text] [Related]  

  • 15. [Biohydrogenation of erucic acid (22:1 n-9 cis) in artificial rumen. I). Effect of octadecapolyenoic fatty acids and the incubation period].
    Borgatti AR; Trigari G
    Boll Soc Ital Biol Sper; 1979 Feb; 55(3):205-11. PubMed ID: 553585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of the high saturated fatty acid content of rat fecal lipids.
    Grigor MR; Dunckley GG
    Lipids; 1973 Feb; 8(2):53-5. PubMed ID: 4736301
    [No Abstract]   [Full Text] [Related]  

  • 17. Omega-1, Omega-2 and Omega-3 hydroxylation of long-chain fatty acids, amides and alcohols by a soluble enzyme system from Bacillus megaterium.
    Miura Y; Fulco AJ
    Biochim Biophys Acta; 1975 Jun; 388(3):305-17. PubMed ID: 805599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential biohydrogenation and isomerization of [U-(13)C]oleic and [1-(13)C]oleic acids by mixed ruminal microbes.
    Mosley EE; Nudda A; Corato A; Rossi E; Jenkins T; McGuire MA
    Lipids; 2006 May; 41(5):513-7. PubMed ID: 16933796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species.
    Kemp P; White RW; Lander DJ
    J Gen Microbiol; 1975 Sep; 90(1):100-14. PubMed ID: 1236930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of chain length and degree of unsaturation on plasma free fatty acid uptake by the perfused rat liver.
    Soler-Argilaga C; Infante R; Polonovski J
    Biochim Biophys Acta; 1973 Nov; 326(2):167-73. PubMed ID: 4765100
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.