These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4640379)

  • 1. Rejection criteria for the asymmetric carrier and their application to glucose transport in the human red blood cell.
    Hankin BL; Lieb WR; Stein WD
    Biochim Biophys Acta; 1972 Oct; 288(1):114-26. PubMed ID: 4640379
    [No Abstract]   [Full Text] [Related]  

  • 2. Carrier and non-carrier models for sugar transport in the human red blood cell.
    Lieb WR; Stein WD
    Biochim Biophys Acta; 1972 Apr; 265(2):187-207. PubMed ID: 4555470
    [No Abstract]   [Full Text] [Related]  

  • 3. On the temperature dependence of initial velocities of glucose transport in the human red blood cell.
    Hankin BL; Stein WD
    Biochim Biophys Acta; 1972 Oct; 288(1):127-36. PubMed ID: 4640380
    [No Abstract]   [Full Text] [Related]  

  • 4. Polyol permeability of the human red cell. Interpretation of glucose transport in terms of a pore.
    Bowman RJ; Lwitt DG
    Biochim Biophys Acta; 1977 Apr; 466(1):68-83. PubMed ID: 856270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Changes in glucose transport in fresh human erythrocytes after longer incubation].
    Fuhrmann GF; Liggenstorfer P; Wilbrandt W
    Experientia; 1971 Dec; 27(12):1428-30. PubMed ID: 5144851
    [No Abstract]   [Full Text] [Related]  

  • 6. A new theory of transport for cell membrane pores. I. General theory and application to red cell.
    Levitt DG
    Biochim Biophys Acta; 1974 Nov; 373(1):115-31. PubMed ID: 4429725
    [No Abstract]   [Full Text] [Related]  

  • 7. An analysis of the apparent parameters of the glucose transport system in the red cell membrane.
    Bolis L; Luly P; Becker C; Wilbrandt W
    Biochim Biophys Acta; 1973 Aug; 318(2):289-96. PubMed ID: 4745322
    [No Abstract]   [Full Text] [Related]  

  • 8. Perturbation of red cell volume: constancy of membrane transport parameters for certain slow penetrants.
    Farmer RE; Macey RI
    Biochim Biophys Acta; 1972 Feb; 255(2):502-16. PubMed ID: 5061930
    [No Abstract]   [Full Text] [Related]  

  • 9. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell.
    Eilam Y; Stein WD
    Biochim Biophys Acta; 1972 Apr; 266(1):161-73. PubMed ID: 5041086
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of chlorpromazine on hexose penetration in the human erythrocyte.
    Baker GF; Rogers HJ
    Br J Pharmacol; 1973 Mar; 47(3):655P. PubMed ID: 4730865
    [No Abstract]   [Full Text] [Related]  

  • 11. A model for sugar transport across red cell membranes without carriers.
    Naftalin RJ
    Biochim Biophys Acta; 1970 Jul; 211(1):65-78. PubMed ID: 5470389
    [No Abstract]   [Full Text] [Related]  

  • 12. Anomalous transport kinetics and the glucose carrier hypothesis.
    Regen DM; Tarpley HL
    Biochim Biophys Acta; 1974 Mar; 339(2):218-33. PubMed ID: 4827852
    [No Abstract]   [Full Text] [Related]  

  • 13. Uphill transport induced by counterflow.
    ROSENBERG T; WILBRANDT W
    J Gen Physiol; 1957 Nov; 41(2):289-96. PubMed ID: 13475692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrier-mediated transport across the erythrocyte membrane: a rigorous test for the simple carrier model.
    Hoare DG
    Biochem J; 1972 Apr; 127(3):62P. PubMed ID: 5076209
    [No Abstract]   [Full Text] [Related]  

  • 15. [Membrane permeability, active transport and carrier mechanism].
    WILBRANDT W
    Dtsch Med Wochenschr; 1957 Jul; 82(28):1153-8. PubMed ID: 13447594
    [No Abstract]   [Full Text] [Related]  

  • 16. [Current data on the carrier significance in sugar transport].
    Wilbrandt W
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1965; 83(2):85-93. PubMed ID: 4157997
    [No Abstract]   [Full Text] [Related]  

  • 17. Sugar transport in reversibly hemolyzed avian erythrocytes.
    Whitfield CF
    Biochim Biophys Acta; 1976 Jun; 436(1):199-209. PubMed ID: 1276211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method for measuring glucose translocation through biological membranes and its application to human erythrocyte ghosts.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):412-21. PubMed ID: 4719138
    [No Abstract]   [Full Text] [Related]  

  • 19. Glucose transport in white erythrocyte ghosts and membrane-derived vesicles.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):422-8. PubMed ID: 4719139
    [No Abstract]   [Full Text] [Related]  

  • 20. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.