These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4640380)

  • 1. On the temperature dependence of initial velocities of glucose transport in the human red blood cell.
    Hankin BL; Stein WD
    Biochim Biophys Acta; 1972 Oct; 288(1):127-36. PubMed ID: 4640380
    [No Abstract]   [Full Text] [Related]  

  • 2. Glucose transport in white erythrocyte ghosts and membrane-derived vesicles.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):422-8. PubMed ID: 4719139
    [No Abstract]   [Full Text] [Related]  

  • 3. A new method for measuring glucose translocation through biological membranes and its application to human erythrocyte ghosts.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):412-21. PubMed ID: 4719138
    [No Abstract]   [Full Text] [Related]  

  • 4. Carrier and non-carrier models for sugar transport in the human red blood cell.
    Lieb WR; Stein WD
    Biochim Biophys Acta; 1972 Apr; 265(2):187-207. PubMed ID: 4555470
    [No Abstract]   [Full Text] [Related]  

  • 5. Interaction between phloretin and the red blood cell membrane.
    Jennings ML; Solomon AK
    J Gen Physiol; 1976 Apr; 67(4):381-97. PubMed ID: 5575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rejection criteria for the asymmetric carrier and their application to glucose transport in the human red blood cell.
    Hankin BL; Lieb WR; Stein WD
    Biochim Biophys Acta; 1972 Oct; 288(1):114-26. PubMed ID: 4640379
    [No Abstract]   [Full Text] [Related]  

  • 7. [Changes in glucose transport in fresh human erythrocytes after longer incubation].
    Fuhrmann GF; Liggenstorfer P; Wilbrandt W
    Experientia; 1971 Dec; 27(12):1428-30. PubMed ID: 5144851
    [No Abstract]   [Full Text] [Related]  

  • 8. Reconstitution and "transport specificity fractionation" of the human erythrocyte glucose transport system. A new approach for identification and isolation of membrane transport proteins.
    Goldin SM; Rhoden V
    J Biol Chem; 1978 Apr; 253(8):2575-83. PubMed ID: 632287
    [No Abstract]   [Full Text] [Related]  

  • 9. D-glucose permeability in river lamprey (Lampetra fluviatilis) and carp (Cyprinus carpio) erythrocytes.
    Tiihonen K; Nikinmaa M
    Comp Biochem Physiol A Comp Physiol; 1991; 100(3):581-4. PubMed ID: 1685971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of glucose transport in human erythrocytes.
    Brahm J
    J Physiol; 1983 Jun; 339():339-54. PubMed ID: 6887027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of membrane lipid fluidity on glucose and uridine facilitated diffusion in human erythrocytes.
    Read BD; McElhaney RN
    Biochim Biophys Acta; 1976 Jan; 419(2):331-41. PubMed ID: 1247559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for sugar transport across red cell membranes without carriers.
    Naftalin RJ
    Biochim Biophys Acta; 1970 Jul; 211(1):65-78. PubMed ID: 5470389
    [No Abstract]   [Full Text] [Related]  

  • 13. The detection of the enthalpy of binding of D-glucose of human red blood cell membranes by microcalorimetry.
    Zala CA; Jones MN; Levine M
    FEBS Lett; 1974 Nov; 48(2):196-9. PubMed ID: 4435219
    [No Abstract]   [Full Text] [Related]  

  • 14. Interaction of sugar acetals with the human erythrocyte glucose transport system.
    Novak RA; LeFevre PG
    J Membr Biol; 1974 Jul; 17(3):383-90. PubMed ID: 4847765
    [No Abstract]   [Full Text] [Related]  

  • 15. An analysis of the apparent parameters of the glucose transport system in the red cell membrane.
    Bolis L; Luly P; Becker C; Wilbrandt W
    Biochim Biophys Acta; 1973 Aug; 318(2):289-96. PubMed ID: 4745322
    [No Abstract]   [Full Text] [Related]  

  • 16. Anomalous transport kinetics and the glucose carrier hypothesis.
    Regen DM; Tarpley HL
    Biochim Biophys Acta; 1974 Mar; 339(2):218-33. PubMed ID: 4827852
    [No Abstract]   [Full Text] [Related]  

  • 17. Phloretin keto-enol tautomerism and inhibition of glucose transport in human erythrocytes (including effects of phloretin on anion transport).
    Fuhrmann GF; Dernedde S; Frenking G
    Biochim Biophys Acta; 1992 Sep; 1110(1):105-11. PubMed ID: 1390829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyol permeability of the human red cell. Interpretation of glucose transport in terms of a pore.
    Bowman RJ; Lwitt DG
    Biochim Biophys Acta; 1977 Apr; 466(1):68-83. PubMed ID: 856270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of phloretin on red cell nonelectrolyte permeability.
    Owen JD; Steggall M; Eyring EM
    J Membr Biol; 1974; 19(1):79-92. PubMed ID: 4431042
    [No Abstract]   [Full Text] [Related]  

  • 20. The exchange and maximal net flux of glucose across the human erythrocyte. II. The effect of two sulphydryl enzyme inhibitors, chlormerodrin and p-chloromercuribenzene sulfonic acid.
    Zipper H; Mawe RC
    Biochim Biophys Acta; 1974 Jul; 356(2):207-18. PubMed ID: 4854826
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.