These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 464040)

  • 41. Neuromuscular organization of feline anterior sartorius: II. Intramuscular length changes and complex length-tension relationships during stimulation of individual nerve branches.
    Scott SH; Thomson DB; Richmond FJ; Loeb GE
    J Morphol; 1992 Aug; 213(2):171-83. PubMed ID: 1518070
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Length-tension relationship of the feline thyroarytenoid muscle.
    Johns MM; Urbanchek M; Chepeha DB; Kuzon WM; Hogikyan ND
    J Voice; 2004 Sep; 18(3):285-91. PubMed ID: 15331100
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Predictability of skeletal muscle tension from architectural determinations in guinea pig hindlimbs.
    Powell PL; Roy RR; Kanim P; Bello MA; Edgerton VR
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Dec; 57(6):1715-21. PubMed ID: 6511546
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anaerobic energy provision in aged skeletal muscle during tetanic stimulation.
    Campbell CB; Marsh DR; Spriet LL
    J Appl Physiol (1985); 1991 Apr; 70(4):1787-95. PubMed ID: 1829080
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Caffeine administration results in greater tension development in previously fatigued canine muscle in situ.
    Howlett RA; Kelley KM; Grassi B; Gladden LB; Hogan MC
    Exp Physiol; 2005 Nov; 90(6):873-9. PubMed ID: 16118234
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Whole muscle length-tension properties vary with recruitment and rate modulation in areflexive cat soleus.
    Sandercock TG; Heckman CJ
    J Neurophysiol; 2001 Mar; 85(3):1033-8. PubMed ID: 11247973
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of hindlimb immobilization on the fatigability of skeletal muscle.
    Witzmann FA; Kim DH; Fitts RH
    J Appl Physiol Respir Environ Exerc Physiol; 1983 May; 54(5):1242-8. PubMed ID: 6863083
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The time course of early changes in the rate of tension development in electrically-stimulated frog toe muscle: effects of muscle length, temperature and twitch-potentiators.
    Foulks JG; Perry FA
    J Physiol; 1966 Jul; 185(2):355-81. PubMed ID: 16992226
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Depression of posttetanic twitch potentiation by low calcium and calcium channel antagonists.
    Williams JH
    J Appl Physiol (1985); 1990 Sep; 69(3):1093-7. PubMed ID: 2246158
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of temperature on myosin phosphorylation in mouse skeletal muscle.
    Moore RL; Palmer BM; Williams SL; Tanabe H; Grange RW; Houston ME
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C432-8. PubMed ID: 2399966
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension.
    Martineau LC; Gardiner PF
    J Appl Physiol (1985); 2001 Aug; 91(2):693-702. PubMed ID: 11457783
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions.
    Spriet LL
    Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oxygen uptake for isotonic and isometric twitch contractions of dog skeletal muscle in situ.
    Stainsby WN
    Am J Physiol; 1970 Aug; 219(2):435-9. PubMed ID: 5448073
    [No Abstract]   [Full Text] [Related]  

  • 54. Myosin light chain phosphorylation in fast and slow skeletal muscles in situ.
    Moore RL; Stull JT
    Am J Physiol; 1984 Nov; 247(5 Pt 1):C462-71. PubMed ID: 6548609
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rises in whole muscle passive tension of mammalian muscle after eccentric contractions at different lengths.
    Whitehead NP; Morgan DL; Gregory JE; Proske U
    J Appl Physiol (1985); 2003 Sep; 95(3):1224-34. PubMed ID: 12740312
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The motor units of cat medial gastrocnemius: electrical and mechanical properties as a function of muscle length.
    Stephens JA; Reinking RM; Stuart DG
    J Morphol; 1975 Aug; 146(4):495-512. PubMed ID: 1152072
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of two Hill-type skeletal muscle models on the construction of medial gastrocnemius length-tension curves in humans in vivo.
    Hoffman BW; Lichtwark GA; Carroll TJ; Cresswell AG
    J Appl Physiol (1985); 2012 Jul; 113(1):90-6. PubMed ID: 22582218
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acute diaphragmatic shortening: in vitro mechanics and fatigue.
    Farkas GA; Roussos C
    Am Rev Respir Dis; 1984 Sep; 130(3):434-8. PubMed ID: 6476594
    [TBL] [Abstract][Full Text] [Related]  

  • 59. O2 uptake and developed tension during and after fatigue, curare block, and ischemia.
    Gladden LB; MacIntosh BR; Stainsby WN
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Nov; 45(5):751-5. PubMed ID: 215584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of velocity and mechanical history on the forces of motor units in the cat medial gastrocnemius muscle.
    Heckman CJ; Weytjens JL; Loeb GE
    J Neurophysiol; 1992 Nov; 68(5):1503-15. PubMed ID: 1479427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.