BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 464042)

  • 1. Energetics of sugar transport by isolated intestinal epithelial cells: effects of cytochalasin B.
    Kimmich GA; Randles J
    Am J Physiol; 1979 Jul; 237(1):C56-63. PubMed ID: 464042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials.
    Kimmich GA; Carter-Su C; Randles J
    Am J Physiol; 1977 Nov; 233(5):E357-62. PubMed ID: 562624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal transport: studies with isolated epithelial cells.
    Kimmich GA
    Environ Health Perspect; 1979 Dec; 33():37-44. PubMed ID: 540624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium.
    Kimmich GA; Randles J
    Am J Physiol; 1981 Nov; 241(5):C227-32. PubMed ID: 7304734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of phloretin and theophylline on 3-O-methylglucose transport by intestinal epithelial cells.
    Randles J; Kimmich GA
    Am J Physiol; 1978 Mar; 234(3):C64-72. PubMed ID: 629334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycyl-L-sarcosine transport by ATP-depleted isolated enterocytes from chicks.
    Calonge ML; Ilundáin A; Bolufer J
    Am J Physiol; 1990 Nov; 259(5 Pt 1):G775-80. PubMed ID: 2240219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the serosal sugar carrier in isolated intestinal epithelial cells by saccharin.
    Kimmich GA; Randles J; Anderson RL
    Food Chem Toxicol; 1988; 26(11-12):927-34. PubMed ID: 3209132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for an intestinal Na+:sugar transport coupling stoichiometry of 2.0.
    Kimmich GA; Randles J
    Biochim Biophys Acta; 1980 Mar; 596(3):439-44. PubMed ID: 7362824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-sugar coupling stoichiometry in chick intestinal cells.
    Kimmich GA; Randles J
    Am J Physiol; 1984 Jul; 247(1 Pt 1):C74-82. PubMed ID: 6331188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells.
    Kimmich GA; Randles J
    J Membr Biol; 1975 Aug; 23(1):57-76. PubMed ID: 1165580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of intestinal epithelial cells and evaluation of transport functions.
    Kimmich GA
    Methods Enzymol; 1990; 192():324-40. PubMed ID: 2074796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of membrane potential on Na+-dependent sugar transport by ATP-depleted intestinal cells.
    Carter-Su C; Kimmich GA
    Am J Physiol; 1980 Mar; 238(3):C73-80. PubMed ID: 7369349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochalasin B does not stimulate sugar uptake into small intestine of necturus or chick.
    Diez de los Rios A; Baxendale LM; Armstrong WM
    Biochim Biophys Acta; 1980 Dec; 603(1):207-10. PubMed ID: 7448186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between monosaccharides and leucine in basolateral membrane of isolated chick intestinal epithelial cells.
    Bolufer J; Santos FJ; Vila A
    Rev Esp Fisiol; 1982 Mar; 38(1):65-70. PubMed ID: 7100606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of the chicken proximal cecum hexose transport system.
    Ferrer R; Planas JM; Moretó M
    Pflugers Arch; 1986 Jul; 407(1):100-4. PubMed ID: 3737374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of cellular cyclic AMP in theophylline-induced sugar accumulation in chicken intestinal epithelial cells.
    Moretó M; Planas JM; De Gabriel C; Santos FJ
    Biochim Biophys Acta; 1984 Mar; 771(1):68-73. PubMed ID: 6322846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Na+-dependent sugar transport in intestinal epithelial cells by exogenous ATP.
    Kimmich G; Randles J
    Am J Physiol; 1980 May; 238(5):C177-83. PubMed ID: 7377337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-coupled sugar transport: membrane potential-dependent Km and Ki for Na+.
    Kimmich GA; Randles J
    Am J Physiol; 1988 Oct; 255(4 Pt 1):C486-94. PubMed ID: 3177623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose transport in fish erythrocytes: variable cytochalasin-B-sensitive hexose transport activity in the common eel (Anguilla japonica) and transport deficiency in the paddyfield eel (Monopterus albus) and rainbow trout (Salmo gairdneri).
    Tse CM; Young JD
    J Exp Biol; 1990 Jan; 148():367-83. PubMed ID: 2307927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.