These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4640508)

  • 21. The metabolism of D-arabinose: alternate kinases for the phosphorylation of D-ribulose in Escherichia coli and Aerobacter aerogenes.
    Leblanc DJ; Mortlock RP
    Arch Biochem Biophys; 1972 Jun; 150(2):774-81. PubMed ID: 4557890
    [No Abstract]   [Full Text] [Related]  

  • 22. Pathway of L-sorbose metabolism in Aerobacter aerogenes.
    Kelker NE; Simkins RA; Anderson RL
    J Biol Chem; 1972 Mar; 247(5):1479-83. PubMed ID: 4401059
    [No Abstract]   [Full Text] [Related]  

  • 23. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induction of the phosphoenolpyruvate: hexose phosphotransferase system associated with relative anaerobiosis in an obligate aerobe.
    Pelliccione N; Jaffin B; Sobel ME; Krulwich TA
    Eur J Biochem; 1979 Mar; 95(1):69-75. PubMed ID: 456352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glucose inhibition of the transport and phosphoenolpyruvate-dependent phosphorylation of galactose and fructose in Vibrio cholerae.
    Bag J
    J Bacteriol; 1974 May; 118(2):764-7. PubMed ID: 4828312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of transport of glucose, fructose, and mannitol by Pseudomonas aeruginosa.
    Eagon RG; Phibbs PV
    Can J Biochem; 1971 Sep; 49(9):1031-41. PubMed ID: 5003580
    [No Abstract]   [Full Text] [Related]  

  • 27. Growth of Aerobacter aerogenes on D-arabinose: origin of the enzyme activities.
    Oliver EJ; Mortlock RP
    J Bacteriol; 1971 Oct; 108(1):287-92. PubMed ID: 5122807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Vectorial phosphorylation, a mechanism of carbohydrate transport in bacteria].
    Hengstenberg W; Schrecker O
    Zentralbl Bakteriol Orig A; 1974; 228(1):246-7. PubMed ID: 4154674
    [No Abstract]   [Full Text] [Related]  

  • 29. Existence of two alternative pathways for fructose and sorbitol metabolism in Bacillus subtilis Marburg.
    Delobbe A; Chalumeau H; Gay P
    Eur J Biochem; 1975 Feb; 51(2):503-10. PubMed ID: 168069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphoenolpyruvate:fructose phosphotransferase activity in whole cells and membrane vesicles of Arthrobacter pyridinolis.
    Wolfson EB; Sobel ME; Krulwich TA
    Biochim Biophys Acta; 1973 Sep; 321(1):181-8. PubMed ID: 4356303
    [No Abstract]   [Full Text] [Related]  

  • 31. Evidence for a phosphoenolpyruvate-dependent sugar phosphotransferase in Mycoplasma strain Y.
    Van Demark PJ; Plackett P
    J Bacteriol; 1972 Aug; 111(2):454-8. PubMed ID: 5053467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system.
    Cordaro C
    Annu Rev Genet; 1976; 10():341-59. PubMed ID: 189682
    [No Abstract]   [Full Text] [Related]  

  • 33. Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: glucose-negative mutant and regulation of intracellular cyclic AMP.
    Mugharbil U; Cirillo VP
    J Bacteriol; 1978 Jan; 133(1):203-9. PubMed ID: 201608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphoenolpyruvate-dependent phosphorylation of sucrose by Clostridium tyrobutyricum ZJU 8235: evidence for the phosphotransferase transport system.
    Jiang L; Cai J; Wang J; Liang S; Xu Z; Yang ST
    Bioresour Technol; 2010 Jan; 101(1):304-9. PubMed ID: 19726178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myo-inositol transport in Aerobacter aerogenes.
    Deshusses J; Reber G
    Biochim Biophys Acta; 1972 Aug; 274(2):598-605. PubMed ID: 5049009
    [No Abstract]   [Full Text] [Related]  

  • 36. The role of phosphotransferase-mediated syntheses of fructose 1-phosphate and fructose 6-phosphate in the growth of Escherichia coli on fructose.
    Ferenci T; Kornberg HL
    Proc R Soc Lond B Biol Sci; 1974 Sep; 187(1087):105-19. PubMed ID: 4153999
    [No Abstract]   [Full Text] [Related]  

  • 37. Phosphoenolpyruvate-dependent fructose phosphotransferase system in Rhodopseudomonas sphaeroides. The coupling between transport and phosphorylation in inside-out vesicles.
    Lolkema JS; Robillard GT
    Eur J Biochem; 1985 Feb; 147(1):69-75. PubMed ID: 3871694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Initial characterization of hexose and hexitol phosphoenolpyruvate-dependent phosphotransferases of Staphylococcus aureus.
    Friedman SA; Hays JB
    J Bacteriol; 1977 Jun; 130(3):991-9. PubMed ID: 863862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of the kinetic constants of fructose transport and phosphorylation in the perfused rat liver.
    Sestoft L; Fleron P
    Biochim Biophys Acta; 1974 Apr; 345(1):27-38. PubMed ID: 4365063
    [No Abstract]   [Full Text] [Related]  

  • 40. Isoprenoid alcohol kinase--a third butanol-soluble enzyme in Klebsiella aerogenes membranes.
    Poxton IR; Lomax JA; Sutherland IW
    J Gen Microbiol; 1974 Sep; 84(1):231-3. PubMed ID: 4373523
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.