These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 4640508)

  • 61. Effect of growth rate and glucose concentration on the activity of the phosphoenolpyruvate phosphotransferase system in Streptococcus mutans Ingbritt grown in continuous culture.
    Ellwood DC; Phipps PJ; Hamilton IR
    Infect Immun; 1979 Feb; 23(2):224-31. PubMed ID: 33901
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The utilization of fructose by Escherichia coli. Properties of a mutant defective in fructose 1-phosphate kinase activity.
    Ferenci T; Kornberg HL
    Biochem J; 1973 Feb; 132(2):341-7. PubMed ID: 4579702
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The role of phosphoenolpyruvate in the simultaneous uptake of fructose and 2-deoxyglucose by Escherichia coli.
    Kornberg H; Lambourne LT
    Proc Natl Acad Sci U S A; 1994 Nov; 91(23):11080-3. PubMed ID: 7972013
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Uptake of fructose by the sorbitol phosphotransferase of Escherichia coli K12.
    Jones-Mortimer MC; Kornberg HL
    J Gen Microbiol; 1976 Oct; 96(2):383-91. PubMed ID: 792388
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships.
    Saier MH
    Bacteriol Rev; 1977 Dec; 41(4):856-71. PubMed ID: 339892
    [No Abstract]   [Full Text] [Related]  

  • 66. Metabolism of D-arabinose by Aerobacter aerogenes: purification of the isomerase.
    Oliver EJ; Mortlock RP
    J Bacteriol; 1971 Oct; 108(1):293-9. PubMed ID: 5122810
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane.
    Reider E; Wagner EF; Schweiger M
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Studies of the acetate kinase-phosphotransacetylase and the butanediol-forming systems in Aerobacter aerogenes.
    Brown TD; Pereira CR; Stormer FC
    J Bacteriol; 1972 Dec; 112(3):1106-11. PubMed ID: 4640502
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Natural and altered induction of the L-fucose catabolic enzymes in Klebsiella aerogenes.
    Saint Martin EJ; Mortlock RP
    J Bacteriol; 1976 Jul; 127(1):91-7. PubMed ID: 179982
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Distribution of 1-phosphofructokinase and PEP:fructose phosphotransferase activity in Clostridia.
    von Hugo H; Gottschalk G
    FEBS Lett; 1974 Sep; 46(1):106-8. PubMed ID: 4278943
    [No Abstract]   [Full Text] [Related]  

  • 71. 3-Deoxy-3-fluoro-D-glucose-resistant Salmonella typhimurium mutants defective in the phosphoenolpyruvate:glycose phosphotransferase system.
    Melton T; Kundig W; Hartman PE; Meadow N
    J Bacteriol; 1976 Dec; 128(3):794-800. PubMed ID: 791932
    [TBL] [Abstract][Full Text] [Related]  

  • 72. THE INCORPORATION OF D-ALLOSE INTO THE GLYCOLYTIC PATHWAY BY AEROBACTER AEROGENES.
    GIBBINS LN; SIMPSON FJ
    Can J Microbiol; 1964 Dec; 10():829-36. PubMed ID: 14272479
    [No Abstract]   [Full Text] [Related]  

  • 73. Distribution of enzymes forming polysaccharide from sucrose and the composition of extracellular polysaccharide synthesized by Streptococcus mutans.
    Robrish SA; Reid W; Krichevsky MI
    Appl Microbiol; 1972 Aug; 24(2):184-90. PubMed ID: 5071647
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transport of citric acid by Aerobacter aerogenes.
    Wilkerson LS; Eagon RG
    Arch Biochem Biophys; 1972 Mar; 149(1):209-21. PubMed ID: 5017252
    [No Abstract]   [Full Text] [Related]  

  • 75. Formation and utilization of PEP in microbial carbohydrate transport.
    Kornberg HL
    Curr Top Cell Regul; 1981; 18():313-27. PubMed ID: 6268363
    [No Abstract]   [Full Text] [Related]  

  • 76. The pathway of myo-inositol degradation in Aerobacter aerogenes. Conversion of 2-deoxy-5-keto-D-gluconic acid to glycolytic intermediates.
    Anderson WA; Magasanik B
    J Biol Chem; 1971 Sep; 246(18):5662-75. PubMed ID: 4328832
    [No Abstract]   [Full Text] [Related]  

  • 77. Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel carbon.
    Wu TT; Lin EC; Tanaka S
    J Bacteriol; 1968 Aug; 96(2):447-56. PubMed ID: 5674056
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Inactivation of the phosphoenolpyruvate-dependent phosphotransferase system in various species of bacteria by vinylglycolic acid.
    Snyder MA; Kaczorowski GJ; Barnes EM; Walsh C
    J Bacteriol; 1976 Jul; 127(1):671-3. PubMed ID: 931953
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Regulation of myo-inositol catabolism in Aerobacter aerogenes.
    Sundaram TK
    J Bacteriol; 1972 Jul; 111(1):284-6. PubMed ID: 4360221
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Carbohydrate metabolism and transport in Bacillus subtilis. A study of ctr mutations.
    Gay P; Cordier P; Marquet M; Delobbe A
    Mol Gen Genet; 1973 Mar; 121(4):355-68. PubMed ID: 4632931
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.