These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 4640958)
1. Recoupling the Na-K pump. Sachs JR J Clin Invest; 1972 Dec; 51(12):3244-7. PubMed ID: 4640958 [TBL] [Abstract][Full Text] [Related]
2. Ouabain-uninhibited sodium transport in human erythrocytes. Evidence against a second pump. Dunn MJ J Clin Invest; 1973 Mar; 52(3):658-70. PubMed ID: 4265384 [TBL] [Abstract][Full Text] [Related]
3. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell. Wiley JS; Cooper RA J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437 [TBL] [Abstract][Full Text] [Related]
4. Lithium efflux through the Na/K pump in human erythrocytes. Dunham PB; Senyk O Proc Natl Acad Sci U S A; 1977 Jul; 74(7):3099-103. PubMed ID: 268658 [TBL] [Abstract][Full Text] [Related]
5. Potassium: potassium exchange catalysed by the sodium pump in human red cells. Simons TJ J Physiol; 1974 Feb; 237(1):123-55. PubMed ID: 4822584 [TBL] [Abstract][Full Text] [Related]
6. Na+-K+ pump activities of high- and low-potassium sheep red cells with internal magnesium and calcium altered by A23187. Fujise H; Lauf PK J Physiol; 1988 Nov; 405():605-14. PubMed ID: 3151371 [TBL] [Abstract][Full Text] [Related]
7. The effect of external sodium on ouabain-insensitive K influx in fresh human red blood cells. Pfliegler G; Kelemen E; Szabó B Acta Biochim Biophys Acad Sci Hung; 1984; 19(3-4):281-8. PubMed ID: 6545635 [TBL] [Abstract][Full Text] [Related]
8. Sodium movements in the human red blood cell. Sachs JR J Gen Physiol; 1970 Sep; 56(3):322-41. PubMed ID: 5476387 [TBL] [Abstract][Full Text] [Related]
9. Sodium movements in high-sodium beef red cells: properties of a ouabain-insensitive exchange diffusion. Motais R J Physiol; 1973 Sep; 233(2):395-422. PubMed ID: 4747234 [TBL] [Abstract][Full Text] [Related]
10. Ouabain-insensitive sodium movements in the human red blood cell. Sachs JR J Gen Physiol; 1971 Mar; 57(3):259-82. PubMed ID: 5544793 [TBL] [Abstract][Full Text] [Related]
11. Ion movements in human red cells independent of the sodium pump. Lubowitz H; Whittam R J Physiol; 1969 May; 202(1):111-31. PubMed ID: 4238987 [TBL] [Abstract][Full Text] [Related]
12. Effects of extracellular cations and ouabain on catecholamine-stimulated sodium and potassium fluxes in turkey erythrocytes. Gardner JD; Kiino DR; Jow N; Aurbach GD J Biol Chem; 1975 Feb; 250(4):1164-75. PubMed ID: 1112799 [TBL] [Abstract][Full Text] [Related]
13. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions. Lijnen P; Hespel P; Lommelen G; Laermans M; M'Buyamba-Kabangu JR; Amery A Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597 [TBL] [Abstract][Full Text] [Related]
14. The ATP dependence of a ouabain-sensitive sodium efflux activated by external sodium, potassium and lithium in human red cells. Beaugé LA; Del Campillo E Biochim Biophys Acta; 1976 May; 433(3):547-54. PubMed ID: 1276192 [TBL] [Abstract][Full Text] [Related]
15. Reversibility and partial reactions of the Na(+)-K+ pump of rat erythrocytes. Duhm J; Zicha J Physiol Bohemoslov; 1990; 39(1):3-14. PubMed ID: 2142785 [TBL] [Abstract][Full Text] [Related]
16. The interaction of potassium ions and ATP on the sodium pump of resealed red cell ghosts. Eisner DA; Richards DE J Physiol; 1981; 319():403-18. PubMed ID: 7320919 [TBL] [Abstract][Full Text] [Related]
17. Cation fluxes and (Na+ + K+)-activated ATPase activity in erythrocytes of patients with essential hypertension. Swarts HG; Bonting SL; De Pont JJ; Schuurmans Stekhoven FM; Thien TA; Van't Laar A Clin Exp Hypertens (1978); 1981; 3(4):831-49. PubMed ID: 6271511 [TBL] [Abstract][Full Text] [Related]
18. The effects of transport inhibitors on sodium outflux and influx in red blood cells: evidence for exchange diffusion. Dunn MJ J Clin Invest; 1970 Oct; 49(10):1804-14. PubMed ID: 4990072 [TBL] [Abstract][Full Text] [Related]
19. Effect of membrane potential and internal pH on active sodium-potassium transport and on ATP content in high-potassium sheep erythrocytes. Zade-Oppen AM; Schooler JM; Cook P; Tosteson DC Biochim Biophys Acta; 1979 Aug; 555(2):285-98. PubMed ID: 38843 [TBL] [Abstract][Full Text] [Related]
20. Non-pumped sodium fluxes in human red blood cells. Evidence for facilitated diffusion. Beaugé L Biochim Biophys Acta; 1975 Aug; 401(1):95-108. PubMed ID: 1148290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]