These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 4642217)

  • 1. Electrical fluctuations associated with active transport.
    Segal JR
    Biophys J; 1972 Nov; 12(11):1371-90. PubMed ID: 4642217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence of an aldosterone influence on active sodium transport upon exposure of frog skin to ouabain.
    Crabbé J; Decoene A
    Arch Int Physiol Biochim; 1974; 82(2):343-6. PubMed ID: 4135877
    [No Abstract]   [Full Text] [Related]  

  • 3. Sodium transport and distribution of electrolytes in frog skin.
    Duncan RL; Watlington CO; Biber TU; Huf EG
    Physiol Chem Phys Med NMR; 1985; 17(2):155-72. PubMed ID: 3001793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the effects of dDAVP and AVP on the sodium transport in the frog skin.
    Bakos P; Ponec J; Lichardus B
    Gen Physiol Biophys; 1990 Feb; 9(1):71-81. PubMed ID: 2311915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of diphenylhydantoin on active sodium transport in frog skin.
    Watson EL; Woodbury DM
    J Pharmacol Exp Ther; 1972 Mar; 180(3):767-76. PubMed ID: 4536839
    [No Abstract]   [Full Text] [Related]  

  • 7. The hyperpolarizing region of the current-voltage curve in frog skin.
    Candia OA
    Biophys J; 1970 Apr; 10(4):323-44. PubMed ID: 5436882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical rectification of the sodium flux across the apical barrier of frog skin epithelium.
    Helman SI
    Soc Gen Physiol Ser; 1981; 36():15-30. PubMed ID: 6974403
    [No Abstract]   [Full Text] [Related]  

  • 9. [Opposite actions of different doses of arginine-vasotocin and 1-deamino-arginine-vasotocin on sodium ion transport in skin of the frog Rana temporaria].
    Bogolepova AE
    Zh Evol Biokhim Fiziol; 2011; 47(1):49-53. PubMed ID: 21469341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathways for chloride and sodium transport across toad skin.
    Bruus K; Kristensen P; Larsen EH
    Acta Physiol Scand; 1976 Mar; 97(1):31-47. PubMed ID: 1274636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power density spectra of frog skin potential, current and admittance functions during patch clamp.
    Hoshiko T
    J Membr Biol; 1978; 40 Spec No():121-34. PubMed ID: 310466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of ouabain on active sodium transport, stimulated by cyclic nucleotides across the frog skin in vivo.
    Szadujkis-Szadurski L; Wiglusz Z
    Pol J Pharmacol Pharm; 1974; 26(6):595-9. PubMed ID: 4374692
    [No Abstract]   [Full Text] [Related]  

  • 13. The characteristics of the frog skin as related to factors affecting Na + -transport.
    Van Driessche W; Borghgraef R; Stymans A
    Arch Int Physiol Biochim; 1971 Oct; 79(4):803-4. PubMed ID: 4110217
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of ethanol on the permeability of frog skin.
    Yorio T; Bentley PJ
    J Pharmacol Exp Ther; 1976 May; 197(2):340-51. PubMed ID: 1083905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microprobe analysis of frog skin epithelium: pathway of transepithelial sodium transport.
    Rick R; Dörge A; Thurau K
    Soc Gen Physiol Ser; 1981; 36():197-208. PubMed ID: 6974404
    [No Abstract]   [Full Text] [Related]  

  • 16. Proceedings: Characteristics of ouabain inhibition in frog skin.
    Borghgraef R; Stymans A; Driessche WV
    Arch Int Physiol Biochim; 1975 Feb; 83(1):143-4. PubMed ID: 50777
    [No Abstract]   [Full Text] [Related]  

  • 17. Energetics of sodium transport in frog skin. I. Oxygen consumption in the short-circuited state.
    Vieira FL; Caplan SR; Essig A
    J Gen Physiol; 1972 Jan; 59(1):60-76. PubMed ID: 4536630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolution of parameters in the equivalent electrical circuit of the sodium transport mechanism across toad skin.
    Isaacson LC
    J Membr Biol; 1977 Jan; 30(4):301-17. PubMed ID: 839526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of lysine-vasopressin (LVP) and 1-deamino-8-D-arginine-vasopressin (dDAVP) upon electrical potential, short-circuit current and transepithelial D.C. resistance of the frog skin.
    Bakos P; Ponec J; Lichardus B
    Gen Physiol Biophys; 1984 Aug; 3(4):297-305. PubMed ID: 6094299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Inhibition of sodium transport in frog skin by ouabagenin and strophanthins K and G].
    Natochin IuV; Lavrova EA
    Biull Eksp Biol Med; 1972 Oct; 73(10):51-3. PubMed ID: 4539041
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.