These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Distribution of enzymes in mesophyll and parenchyma-sheath chloroplasts of maize leaves in relation to the C4-dicarboxylic acid pathway of photosynthesis. Slack CR; Hatch MD; Goodchild DJ Biochem J; 1969 Sep; 114(3):489-98. PubMed ID: 4309527 [TBL] [Abstract][Full Text] [Related]
5. [Binding of glycolytic enzymes on rat liver mitochondria]. Letko G; Höfs T; Liese W Acta Biol Med Ger; 1973; 30(3):365-74. PubMed ID: 4271617 [No Abstract] [Full Text] [Related]
7. [Paths of photosynthetic assimilation of carbon dioxide in Spirulina]. Cherniad'ev II; Terekhova IV; Doman NG; Al'bitskaia ON Dokl Akad Nauk SSSR; 1974 Nov; 219(1):249-52. PubMed ID: 4214685 [No Abstract] [Full Text] [Related]
8. Photosynthesis in Rhodospirillum rubrum. 3. Metabolic control of reductive pentose phosphate and tricarboxylic acid cycle enzymes. Anderson L; Fuller RC Plant Physiol; 1967 Apr; 42(4):497-509. PubMed ID: 6042359 [TBL] [Abstract][Full Text] [Related]
9. Autotrophic CO2 assimilation and the evolution of ribulose diphosphate carboxylase. McFadden BA Bacteriol Rev; 1973 Sep; 37(3):289-319. PubMed ID: 4357017 [No Abstract] [Full Text] [Related]
10. Carbon dioxide fixation and phosphoenolpyruvate carboxylase in Ferrobacillus ferrooxidans. Din GA; Suzuki I; Lees H Can J Microbiol; 1967 Nov; 13(11):1413-9. PubMed ID: 4294210 [No Abstract] [Full Text] [Related]
11. Host response to infection by Coxiella burneti. McDonald TL; Mallavia LP Can J Microbiol; 1975 May; 21(5):675-81. PubMed ID: 164999 [TBL] [Abstract][Full Text] [Related]
12. Changes in the proportions of early products of photosynthetic carbon fixation induced by TYMV infection. Bedbrook JR; Matthews RE Virology; 1972 Apr; 48(1):255-8. PubMed ID: 5017149 [No Abstract] [Full Text] [Related]
13. Photosynthetic-carbon-cycle enzyme activities in the leaves of a chlorophyll-less Phaseolus vulgaris plant. Bradbeer JW Biochem J; 1969 Aug; 114(1):11P. PubMed ID: 5810042 [No Abstract] [Full Text] [Related]
14. A regulatory mechanism for CO 2 assimilation in plant photosynthesis: activation of ribulose-1,5-diphosphate carboxylase by fructose 6-phosphate and deactivation by fructose 1,6-diphosphate. Buchanan BB; Schürmann P FEBS Lett; 1972 Jun; 23(2):157-9. PubMed ID: 4634433 [No Abstract] [Full Text] [Related]
15. Stereochemistry of reduction of D-glyceraldehyde catalyzed by a nicotinamide adenine dinucleotide phosphate dependent dehydrogenase from skeletal muscle. Walton DJ Biochemistry; 1973 Aug; 12(18):3472-8. PubMed ID: 4147215 [No Abstract] [Full Text] [Related]
16. Intermediary metabolism of carbon compounds by nitrifying bacteria. Wallace W; Knowles SE; Nicholas DJ Arch Mikrobiol; 1970; 70(1):26-42. PubMed ID: 5426270 [No Abstract] [Full Text] [Related]
18. Comparative studies on the activity of carboxylases and other enzymes in relation to the new pathway of photosynthetic carbon dioxide fixation in tropical grasses. Slack CR; Hatch MD Biochem J; 1967 Jun; 103(3):660-5. PubMed ID: 4292834 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of Spirochaeta aurantia. I. Anaerobic energy-yielding pathways. Breznak JA; Canale-Parola E Arch Mikrobiol; 1972; 83(4):261-77. PubMed ID: 4261649 [No Abstract] [Full Text] [Related]
20. Genetic control of the metabolism of propionate by Escherichia coli K12. Kay WW Biochim Biophys Acta; 1972 May; 264(3):508-21. PubMed ID: 4554901 [No Abstract] [Full Text] [Related] [Next] [New Search]