These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 4643936)

  • 1. [Taxonomy of bacteria utilizing gaseous hydrocarbons].
    Malashenko IuR; Romanovskaia VA; Kvasnikov EI
    Mikrobiologiia; 1972; 41(5):871-9. PubMed ID: 4643936
    [No Abstract]   [Full Text] [Related]  

  • 2. [The effect of the composition of a gas mixture on the growth of bacteria assimilating gaseous hydrocarbons].
    Smirnova ZS
    Izv Akad Nauk SSSR Biol; 1970; 1():30-7. PubMed ID: 5490991
    [No Abstract]   [Full Text] [Related]  

  • 3. [Methylotrophic bacteria in the sphere of drinking water. 2. Communication: biochemical/physiological and morphological characterisation of the isolated bacteria].
    Dott W; Tuschewitzki GJ; Thofern E
    Zentralbl Bakteriol Mikrobiol Hyg B; 1982 May; 176(2-3):189-201. PubMed ID: 7124168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Formation of gaseous nitrogen from ammonium nitrogen in the course of methane fermentation].
    Rozanova EP; Kuznetsov SI
    Mikrobiologiia; 1972; 41(4):744-5. PubMed ID: 5084527
    [No Abstract]   [Full Text] [Related]  

  • 5. Methanotrophic bacteria in boreal forest soil after fire.
    Jaatinen K; Knief C; Dunfield PF; Yrjålå K; Fritze H
    FEMS Microbiol Ecol; 2004 Nov; 50(3):195-202. PubMed ID: 19712360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life in the extreme: thermoacidophilic methanotrophy.
    Semrau JD; Dispirito AA; Murrell JC
    Trends Microbiol; 2008 May; 16(5):190-3. PubMed ID: 18420412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphism in methane-utilizing bacteria.
    Chapman HM; Ribbons DW
    J Gen Microbiol; 1968 Mar; 50(3):Suppl:8-9. PubMed ID: 5652082
    [No Abstract]   [Full Text] [Related]  

  • 8. [Ethanol formation by methane-utilizing bacteria at ethane co-metabolism].
    Romanovskaia VA; Sokolov IG; Malashenko IuR; Krishtab TP
    Mikrobiol Z; 2002; 64(1):48-56. PubMed ID: 11944346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer.
    Takeuchi M; Nanba K; Iwamoto H; Nirei H; Kusuda T; Kazaoka O; Owaki M; Furuya K
    Water Res; 2005 Jun; 39(11):2438-44. PubMed ID: 15955544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions.
    Scheutz C; Kjeldsen P; Bogner JE; De Visscher A; Gebert J; Hilger HA; Huber-Humer M; Spokas K
    Waste Manag Res; 2009 Aug; 27(5):409-55. PubMed ID: 19584243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The first results of a study of the phylogenetic diversity of microorganisms in southern Baikal sediments from the area of subsurface depositions of methane hydrates].
    Shubenkova OV; Zemskaia TI; Chernitsyna SM; Khlystov OM; Triboĭ TI
    Mikrobiologiia; 2005; 74(3):370-7. PubMed ID: 16119851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methanotrophy below pH 1 by a new Verrucomicrobia species.
    Pol A; Heijmans K; Harhangi HR; Tedesco D; Jetten MS; Op den Camp HJ
    Nature; 2007 Dec; 450(7171):874-8. PubMed ID: 18004305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia.
    Dunfield PF; Yuryev A; Senin P; Smirnova AV; Stott MB; Hou S; Ly B; Saw JH; Zhou Z; Ren Y; Wang J; Mountain BW; Crowe MA; Weatherby TM; Bodelier PL; Liesack W; Feng L; Wang L; Alam M
    Nature; 2007 Dec; 450(7171):879-82. PubMed ID: 18004300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Bacterial methane generation and methods of its optimization].
    Lykov IN; Il'in VK; Starkova LV; Safronova SA; Ziakun AM; Laurinavichus KS; Volykhina NI; Tarasova EA
    Aviakosm Ekolog Med; 2008; 42(3):50-7. PubMed ID: 19055012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane-oxidizing bacteria in fresh waters. 3. The capacity of methane utilization by methane-oxidizing enrichment cultures as revealed by gas chromatographic analyses.
    Naguib M
    Z Allg Mikrobiol; 1971; 11(1):39-47. PubMed ID: 5557059
    [No Abstract]   [Full Text] [Related]  

  • 16. [Efficiency of utilization of free energy by methane-oxidizing bacteria].
    Smirnova ZS
    Mikrobiologiia; 1971; 40(1):5-7. PubMed ID: 5580120
    [No Abstract]   [Full Text] [Related]  

  • 17. [Symbiotic interrelations between bacteria participating in the process of methane fermentation].
    Nikitin GA
    Mikrobiol Zh; 1968; 30(3):210-6. PubMed ID: 5733660
    [No Abstract]   [Full Text] [Related]  

  • 18. [Biogeochemical processes of methane cycle in the soils, swamps and lakes of Western Siberia].
    Gal'chenko VF; Dulov LE; Cramer B; Konova NI; Barysheva SV
    Mikrobiologiia; 2001; 70(2):215-25. PubMed ID: 11386054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microbial consortium couples anaerobic methane oxidation to denitrification.
    Raghoebarsing AA; Pol A; van de Pas-Schoonen KT; Smolders AJ; Ettwig KF; Rijpstra WI; Schouten S; Damsté JS; Op den Camp HJ; Jetten MS; Strous M
    Nature; 2006 Apr; 440(7086):918-21. PubMed ID: 16612380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Formation of methane by microorganisms; review].
    NECHAEVA NB
    Mikrobiologiia; 1953; 22(4):456-71. PubMed ID: 13144386
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.