These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 4647688)

  • 1. Dissipative effects due to hydrodynamic interactions between red cells in a theory of pulse transmission and oscillatory flow in arteries.
    Kline KA; Allen SJ; Keshavarzi M
    Biorheology; 1972 Mar; 9(1):1-22. PubMed ID: 4647688
    [No Abstract]   [Full Text] [Related]  

  • 2. Elastic effects in pulsatile blood flow.
    Thurston GB
    Microvasc Res; 1975 Mar; 9(2):145-57. PubMed ID: 1124003
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanics of blood flow.
    Skalak R; Keller SR; Secomb TW
    J Biomech Eng; 1981 May; 103(2):102-15. PubMed ID: 7024641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Macro- and micro-rheology of blood circulation].
    Niimi H
    Iyodenshi To Seitai Kogaku; 1983 Aug; 21(4):225-32. PubMed ID: 6366292
    [No Abstract]   [Full Text] [Related]  

  • 5. Red cell motions and wall interactions in tube flow.
    Goldsmith HL
    Fed Proc; 1971; 30(5):1578-90. PubMed ID: 5119364
    [No Abstract]   [Full Text] [Related]  

  • 6. Capillary pore rheology of erythrocytes. V. The glass capillary array--effect of velocity and haematocrit in long bore tubes.
    Lingard PS
    Microvasc Res; 1979 May; 17(3 Pt 1):272-89. PubMed ID: 459940
    [No Abstract]   [Full Text] [Related]  

  • 7. On a liquid drop model of blood rheology.
    Kline KA
    Biorheology; 1972 Dec; 9(4):287-99. PubMed ID: 4665828
    [No Abstract]   [Full Text] [Related]  

  • 8. [Simulation analysis in hemorheology (author's transl)].
    Azuma T; Fukushima T; Matsuzawa T
    Iyodenshi To Seitai Kogaku; 1981 Dec; 19(7):480-8. PubMed ID: 7047810
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of erythrocytic deformability upon turbulent blood flow.
    Sabbah HN; Stein PD
    Biorheology; 1976 Nov; 13(5):309-314. PubMed ID: 137022
    [No Abstract]   [Full Text] [Related]  

  • 10. Microscopic flow properties of red cells.
    Goldsmith HL
    Fed Proc; 1967; 26(6):1813-20. PubMed ID: 6075917
    [No Abstract]   [Full Text] [Related]  

  • 11. Oscillatory flow in thin-walled curved elastic tubes--summary.
    Vayo HW; Ghista DN; Chandran KB
    Bull Math Biol; 1977; 39(2):245-8. PubMed ID: 851663
    [No Abstract]   [Full Text] [Related]  

  • 12. Engineering simulation of the viscous behavior of whole blood using suspensions of flexible particles.
    Tickner EG; Sacks AH
    Circ Res; 1969 Oct; 25(4):389-400. PubMed ID: 5347220
    [No Abstract]   [Full Text] [Related]  

  • 13. Mathematical concepts of blood flow and blood rheology.
    Trowbridge EA
    Life Support Syst; 1984; 2(1):25-38. PubMed ID: 6471908
    [No Abstract]   [Full Text] [Related]  

  • 14. Some flow properties of erythrocytes and rouleaux.
    Goldsmith HL
    Bibl Anat; 1967; 9():259-65. PubMed ID: 6029874
    [No Abstract]   [Full Text] [Related]  

  • 15. A model of steady blood flow.
    Ware JH; Sorrell FY; Felder RM
    Biorheology; 1974 Mar; 11(2):97-109. PubMed ID: 4441642
    [No Abstract]   [Full Text] [Related]  

  • 16. [Blood rheology].
    Bartoli V; Cipriani M; Moradei G; Peluso MG
    Cardiol Prat; 1978; 29(1):47-22. PubMed ID: 747831
    [No Abstract]   [Full Text] [Related]  

  • 17. Viscoelasticity of the human erythrocyte membrane.
    Williams AR
    Biorheology; 1973 Sep; 10(3):313-9. PubMed ID: 4772004
    [No Abstract]   [Full Text] [Related]  

  • 18. The laminar flow of a composite fluid: an approach to the rheology of blood.
    Nubar Y
    Ann N Y Acad Sci; 1966 Feb; 136(2):35-57. PubMed ID: 5223530
    [No Abstract]   [Full Text] [Related]  

  • 19. Turbulent blood flow and the effects of erythrocytes.
    Munter WA; Stein PD
    Cardiovasc Res; 1974 May; 8(3):338-46. PubMed ID: 4416756
    [No Abstract]   [Full Text] [Related]  

  • 20. A low Reynolds number entry flow theory and its application to the motion of the plasma in bolus flow.
    Lew HS; Miller J
    J Biomech; 1974 Mar; 7(2):113-21. PubMed ID: 4837545
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.