These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 4647689)
1. On the polar fluid as a model for blood flow in tubes. Cowin SC Biorheology; 1972 Mar; 9(1):23-5. PubMed ID: 4647689 [No Abstract] [Full Text] [Related]
2. Blood flow in capillary tubes: curvature and gravity effects. Hung TC; Hung TK; Bugliarello G Biorheology; 1980; 17(4):331-42. PubMed ID: 7260345 [No Abstract] [Full Text] [Related]
3. [Macro- and micro-rheology of blood circulation]. Niimi H Iyodenshi To Seitai Kogaku; 1983 Aug; 21(4):225-32. PubMed ID: 6366292 [No Abstract] [Full Text] [Related]
4. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter. Reinke W; Johnson PC; Gaehtgens P Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742 [TBL] [Abstract][Full Text] [Related]
5. Capillary pore rheology of erythrocytes. V. The glass capillary array--effect of velocity and haematocrit in long bore tubes. Lingard PS Microvasc Res; 1979 May; 17(3 Pt 1):272-89. PubMed ID: 459940 [No Abstract] [Full Text] [Related]
6. [Hemorheology in microcirculation]. Taniguchi K Kokyu To Junkan; 1989 Jul; 37(7):707-15. PubMed ID: 2799091 [No Abstract] [Full Text] [Related]
7. The effects of fibrination on the in vivo rheology of dog blood. Meiselman HJ; Frasher WG; Wayland H Microvasc Res; 1972 Jan; 4(1):26-41. PubMed ID: 5036678 [No Abstract] [Full Text] [Related]
8. Resistance to blood flow in microvessels in vivo. Pries AR; Secomb TW; Gessner T; Sperandio MB; Gross JF; Gaehtgens P Circ Res; 1994 Nov; 75(5):904-15. PubMed ID: 7923637 [TBL] [Abstract][Full Text] [Related]
9. Rheology in the microcirculation in normal and low flow states. Chien S Adv Shock Res; 1982; 8():71-80. PubMed ID: 7136948 [TBL] [Abstract][Full Text] [Related]
10. Rheology and vasomotion: a validation of hemodilution as a rational therapeutic maneuver. Lewis DH; Schmid-Schönbein H Bibl Haematol; 1981; (47):122-6. PubMed ID: 7337653 [No Abstract] [Full Text] [Related]
11. Ratio of red cell velocities near the vessel wall to velocities at the vessel center in cerebral microcirculation, and an apparent effect of blood viscosity on this ratio. Rosenblum WI Microvasc Res; 1972 Jan; 4(1):98-101. PubMed ID: 5036683 [No Abstract] [Full Text] [Related]
12. Effects of reduced hematocrit on erythrocyte velocity and fluorescein transit time in the cerebral microcirculation of the mouse. Rosenblum WI Circ Res; 1971 Jul; 29(1):96-103. PubMed ID: 5561411 [No Abstract] [Full Text] [Related]
14. Analysis of viscous deformation of the red cell and its effect upon microvascular flow. Wells R; Schmid-Schönbein H; Bygdeman S Bibl Anat; 1969; 10():92-8. PubMed ID: 5407427 [No Abstract] [Full Text] [Related]
15. Simulation studies of blood flow through stenoses in the microcirculation. Tickner EG; Sacks AH Microvasc Res; 1971 Jul; 3(3):337-42. PubMed ID: 5111907 [No Abstract] [Full Text] [Related]
16. On micropolar fluid model for blood flow through narrow tubes. Chaturani P; Upadhya VS Biorheology; 1979; 16(6):419-28. PubMed ID: 534765 [No Abstract] [Full Text] [Related]
17. RHEOLOGY IN MEDICINE AND SURGERY. DINTENFASS L Med J Aust; 1964 Dec; 2():926-30. PubMed ID: 14232466 [No Abstract] [Full Text] [Related]
18. Sickle cell anemia as a rheologic disease. Horne MK Am J Med; 1981 Feb; 70(2):288-98. PubMed ID: 7008586 [TBL] [Abstract][Full Text] [Related]
19. A two-fluid model for blood flow through small diameter tubes. Chaturani P; Upadhya VS Biorheology; 1979; 16(1-2):109-118. PubMed ID: 476292 [No Abstract] [Full Text] [Related]
20. Pulsatile flow in small blood vessels. I. Casson theory. Aroesty J; Gross JF Biorheology; 1972 Mar; 9(1):33-43. PubMed ID: 4647691 [No Abstract] [Full Text] [Related] [Next] [New Search]