BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 4649358)

  • 1. Conversion of biomembrane-produced energy into electric form. V. Membrane particles of Micrococcus lysodeikticus and pea chloroplasts.
    Grinius LL; Il'ina MD; Mileykovskaya EI; Skulachev VP; Tikhonova GV
    Biochim Biophys Acta; 1972 Dec; 283(3):442-55. PubMed ID: 4649358
    [No Abstract]   [Full Text] [Related]  

  • 2. Membrane-reversible H+-ATPase from Micrococcus lysodeikticus.
    Mileykovskaya EI; Tikhonova GV; Kondrashin AA; Kozlov IA
    Eur J Biochem; 1976 Mar; 62(3):613-7. PubMed ID: 4306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthalin: an inhibitor of energy transfer in chloroplasts.
    Gross E; Shavit N; San Pietro A
    Arch Biochem Biophys; 1968 Sep; 127(1):224-8. PubMed ID: 5681420
    [No Abstract]   [Full Text] [Related]  

  • 4. [Formation of an electrical potential linked to electron transport in the membranous particles of Micrococcus lysodeikticus bacteria and pes chloroplasts].
    Grinius LL; Il'ina MD; Mileĭkovskaia EI; Skulachev VP; Tikhonona GV
    Biokhimiia; 1973; 38(6):1153-62. PubMed ID: 4802005
    [No Abstract]   [Full Text] [Related]  

  • 5. [Generation of membrane potential by aerobic bacteria Micrococcus lysodeikticus. Correlation between coupled and uncoupled respiration].
    Artsatbanov VIu; Tikhonova GV; Ostrovskiĭ DN
    Biokhimiia; 1983 Sep; 48(9):1568-79. PubMed ID: 6313079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies with manganese-deficient spinach chloroplasts.
    Anderson JM; Pyliotis NA
    Biochim Biophys Acta; 1969 Oct; 189(2):280-93. PubMed ID: 5350451
    [No Abstract]   [Full Text] [Related]  

  • 7. The electron-transport system of Micrococcus lutea (Sarcina lutea).
    Erickson SK; Parker GL
    Biochim Biophys Acta; 1969 May; 180(1):56-62. PubMed ID: 4182398
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of various energy-conversion states of chloroplasts on proton and electron transport.
    Dilley RA
    Arch Biochem Biophys; 1970 Mar; 137(1):270-83. PubMed ID: 5435061
    [No Abstract]   [Full Text] [Related]  

  • 9. Properties of an oxidative phosphorylation system reconstituted from coupling factors in Micrococcus lysodeikticus.
    Ishikawa S
    J Biochem; 1970 Feb; 67(2):297-312. PubMed ID: 4245665
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of photophosphorylation by tentoxin, a cyclic tetrapeptide.
    Arntzen CJ
    Biochim Biophys Acta; 1972 Dec; 283(3):539-42. PubMed ID: 4649361
    [No Abstract]   [Full Text] [Related]  

  • 11. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. II. Acceptor-specific inhibition by KCN.
    Ouitrakul R; Izawa S
    Biochim Biophys Acta; 1973 Apr; 305(1):105-18. PubMed ID: 4719594
    [No Abstract]   [Full Text] [Related]  

  • 12. Inorganic sulfate and selenate as energy transfer inhibitors of photophosphorylation.
    Pick U; Avron M
    Biochim Biophys Acta; 1973 Nov; 325(2):297-303. PubMed ID: 4271564
    [No Abstract]   [Full Text] [Related]  

  • 13. Interaction of uncouplers and energy transfer inhibitors with high-energy states of chloroplasts.
    Gross E; San Pietro A
    Arch Biochem Biophys; 1969 Apr; 131(1):49-56. PubMed ID: 5781733
    [No Abstract]   [Full Text] [Related]  

  • 14. Oxidative phosphorylation in Micrococcus denitrificans under autotrophic growth conditions.
    Knobloch K; Ishaque M; Aleem MI
    Arch Mikrobiol; 1971; 76(2):114-25. PubMed ID: 5553027
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of calcium ions and pentachlorophenol on the respiration of Micrococcus lysodeikticus.
    Fujita M; Ishikawa S; Yamashita S
    Nature; 1967 Feb; 213(5076):616-7. PubMed ID: 4291733
    [No Abstract]   [Full Text] [Related]  

  • 16. Keilin's respiratory chain concept and its chemiosmotic consequences.
    Mitchell P
    Science; 1979 Dec; 206(4423):1148-59. PubMed ID: 388618
    [No Abstract]   [Full Text] [Related]  

  • 17. Oxidative phosphorylation in Micrococcus denitrificans. V. Effects of iron deficiency on respiratory components and oxidative phosphorylation.
    Imai K; Asano A; Sato R
    J Biochem; 1968 Feb; 63(2):219-25. PubMed ID: 4299377
    [No Abstract]   [Full Text] [Related]  

  • 18. Delayed light studies on photosynthetic energy conversion. VII. Effect of the high energy state, coupled to 2,3,5,6-tetramethyl p-phenylenediamine-catalyzed cyclic electron flow, on millisecond emission from chloroplasts and digitonin subchloroplast particles.
    Cohen WS; Bertsch W
    Biochim Biophys Acta; 1974 Jun; 347(3):371-82. PubMed ID: 4135380
    [No Abstract]   [Full Text] [Related]  

  • 19. Electron transport particles released upon lysis of spheroplasts of Escherichia coli B by Brij 58.
    Birdsell DC; Cota-Robles EH
    Biochim Biophys Acta; 1970 Sep; 216(2):250-61. PubMed ID: 4323431
    [No Abstract]   [Full Text] [Related]  

  • 20. The stoichiometric relation of phosphorylation to electron transport in isolated chloroplasts.
    Izawa S; Good NE
    Biochim Biophys Acta; 1968 Oct; 162(3):380-91. PubMed ID: 5680279
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.