BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 4649820)

  • 21. Fatty acyl-CoA elongation in Blatella germanica integumental microsomes.
    Juárez MP
    Arch Insect Biochem Physiol; 2004 Aug; 56(4):170-8. PubMed ID: 15274178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The metabolism of unsaturated fatty acid. 3. On the beta-oxidation of mono- and polyene-fatty acids. The mechanism of the enzymatic reaction on delta-3-cis-enoyl-CoA compounds].
    Stoffel W; Ditzer R; Caesar H
    Hoppe Seylers Z Physiol Chem; 1964; 339(1):167-81. PubMed ID: 5830064
    [No Abstract]   [Full Text] [Related]  

  • 23. Metabolic alterations of fatty acids.
    Fulco AJ
    Annu Rev Biochem; 1974; 43(0):215-41. PubMed ID: 4604757
    [No Abstract]   [Full Text] [Related]  

  • 24. [Biosynthesis of mevalonic acid, sterols and bile acids from acetyl-CoA and malonyl-CoA in the human liver].
    Klimov AN; Poliakova ED; Klimova TA; Dizhe EB; Vasil'eva LE
    Biokhimiia; 1983 Nov; 48(11):1862-9. PubMed ID: 6661459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The relationship between fatty acid activation and elongation in rabbit brain microsomes.
    Carey EM; Cantrill RC
    J Neurochem; 1975 Apr; 24(4):807-9. PubMed ID: 1123637
    [No Abstract]   [Full Text] [Related]  

  • 26. Endogenous lipolysis in mitochondria and microsomes from intestinal mucosa and liver.
    Sarzala MG
    Bull Acad Pol Sci Biol; 1969; 17(5):285-90. PubMed ID: 5392531
    [No Abstract]   [Full Text] [Related]  

  • 27. Targeting malonyl CoA inhibition of mitochondrial fatty acid uptake as an approach to treat cardiac ischemia/reperfusion.
    Ussher JR; Lopaschuk GD
    Basic Res Cardiol; 2009 Mar; 104(2):203-10. PubMed ID: 19242641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Biosynthesis of fatty acids in mouse brain mitochondria in the presence of malonyl-CoA or acetyl-CoA].
    Paturneau-Jouas M; Baumann N; Bourre JM
    Biochimie; 1976; 58(3):341-9. PubMed ID: 6069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Biosynthesis of cholic and chenodeoxycholic acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in a reconstituted system from the rat liver].
    Poliakova ED; Vasil'eva LE; Denisenko TV; Dizhe EB; Klimova TA; Petrova LA; Klimov AN
    Biokhimiia; 1981 Mar; 46(3):462-72. PubMed ID: 7236804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the mechanism and control of the malonyl-CoA-dependent chain elongation of fatty acids. The malonyl-transfer reaction.
    Podack ER; Saathoff G; Seubert
    Eur J Biochem; 1974 Dec; 50(1):237-43. PubMed ID: 4452359
    [No Abstract]   [Full Text] [Related]  

  • 31. Mechanisms and physiological roles of fatty acid chain elongation in microsomes and mitochondria.
    Seubert W; Podack ER
    Mol Cell Biochem; 1973 May; 1(1):29-40. PubMed ID: 4154399
    [No Abstract]   [Full Text] [Related]  

  • 32. Control of hepatic fatty acid oxidation by 5'-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism.
    Velasco G; Geelen MJ; Guzmán M
    Arch Biochem Biophys; 1997 Jan; 337(2):169-75. PubMed ID: 9016810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of branched and other long-chain fatty acids by rat liver microsomes.
    Lippel K
    J Lipid Res; 1973 Jan; 14(1):102-9. PubMed ID: 4701547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the mode of action of clofibrate on lipid metabolism. Inhibition of rat liver microsomal fatty acid synthesis.
    Landriscina C; Gnoni GV; Quagliariello E
    Biochem Med; 1975 Apr; 12(4):356-64. PubMed ID: 240354
    [No Abstract]   [Full Text] [Related]  

  • 35. [Biosynthesis of saturated and unsaturated higher fatty acids in normal structures].
    Alimova EK; Astvatsatur'ian AT; Kostromitina LI; Shepelev AP
    Usp Sovrem Biol; 1972; 74(3):343-67. PubMed ID: 4348884
    [No Abstract]   [Full Text] [Related]  

  • 36. Adrenal gland steroid C-21 cytochrome P-450 reductase.
    Sweat ML; Dutcher JS; Young RB; Bryson MJ
    Biochemistry; 1969 Dec; 8(12):4956-63. PubMed ID: 5365789
    [No Abstract]   [Full Text] [Related]  

  • 37. Factors involved in fatty acyl CoA desaturation by fungal microsomes. The relative roles of acyl CoA and phospholipids as substrates.
    Baker N; Lynen F
    Eur J Biochem; 1971 Mar; 19(2):200-10. PubMed ID: 4324068
    [No Abstract]   [Full Text] [Related]  

  • 38. High metabolism and subsequent elongation of 3-hydroxyeicosanoyl-CoA in very-long-chain fatty acid deficient PNS of Trembler mice.
    Sargueil F; Knoll A; Salles J; Garbay B; Cassagne C
    Neurosci Lett; 1999 Sep; 273(1):29-32. PubMed ID: 10505644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fatty acid elongation in the biosynthesis of (Z)-10-heptadecen-2-one and 2-tridecanone in ejaculatory bulb microsomes of Drosophila buzzatii.
    Skiba PJ; Jackson LL
    Insect Biochem Mol Biol; 1994 Sep; 24(8):847-53. PubMed ID: 7981731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the mechanism of malonyl-CoA-independent fatty acid synthesis. I. The mechanism of elongation of long-chain fatty acids by acetyl-CoA.
    Seubert W; Lamberts I; Kramer R; Ohly B
    Biochim Biophys Acta; 1968 Dec; 164(3):498-517. PubMed ID: 4387390
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.