These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 4649820)

  • 61. Chain elongation in the formation of polyunsaturated fatty acids by brain: some properties of the microsomal system.
    Cook HW
    Arch Biochem Biophys; 1982 Apr; 214(2):695-704. PubMed ID: 7092216
    [No Abstract]   [Full Text] [Related]  

  • 62. The enzymic chain elongation of fatty acids by rat-liver microsomes.
    Nugteren DH
    Biochim Biophys Acta; 1965 Oct; 106(2):280-90. PubMed ID: 4379659
    [No Abstract]   [Full Text] [Related]  

  • 63. Utilization of malonyl-CoA for the biosynthesis of beta-carotene and ergosterol in cell-free preparations from Blakeslea trispora.
    Neujahr HY; Björk L
    Acta Chem Scand; 1970; 24(7):2361-5. PubMed ID: 5485039
    [No Abstract]   [Full Text] [Related]  

  • 64. Fatty acid biosynthesis during brain development.
    Bourre JM; Pollet S; Paturneau-Jouas M; Baumann N
    Adv Exp Med Biol; 1978; 101():17-26. PubMed ID: 27067
    [No Abstract]   [Full Text] [Related]  

  • 65. [Hormonal regulation of adrenal 5 alpha-reductase activity in rats].
    Malendowicz LK
    Endokrynol Pol; 1977; 28(5):361-70. PubMed ID: 923535
    [No Abstract]   [Full Text] [Related]  

  • 66. Transformations of the polyunsaturated fatty acids in the brain.
    Mead JF; Dhopeshwarkar GA; Elepano MG
    Adv Exp Med Biol; 1977; 83():313-28. PubMed ID: 920466
    [No Abstract]   [Full Text] [Related]  

  • 67. [Desaturation of long-chain fatty acids. I. Properties of the system for desaturating long chain fatty acids in certain aquatic crustaceans].
    Heinen E; Dandrifosse G
    Arch Int Physiol Biochim; 1973 Feb; 81(1):1-8. PubMed ID: 4122929
    [No Abstract]   [Full Text] [Related]  

  • 68. [THE METABOLISM OF UNSATURATED FATTY ACIDS. II. PROPERTIES OF THE CHAIN-ELONGATING ENZYME. APROPOS OF THE BIOHYDROGENATION OF UNSATURATED FATTY ACIDS].
    STOFFEL W; ACH KL
    Hoppe Seylers Z Physiol Chem; 1964; 337():123-32. PubMed ID: 14238846
    [No Abstract]   [Full Text] [Related]  

  • 69. Aspects of omega- and (omega-1)-oxidation of fatty acids by microsomal preparations from sheep liver [proceedings].
    Wahle KW; Hare WR; Paterson SM
    Biochem Soc Trans; 1978; 6(6):1158-9. PubMed ID: 744377
    [No Abstract]   [Full Text] [Related]  

  • 70. Metabolism of [14C]hydroprene (ethyl 3,7,11-trimethyl-2,4-dodecadienoate) by microsomal oxidases and esterases from three species of diptera.
    Yu SJ; Terriere LC
    J Agric Food Chem; 1977; 25(5):1076-80. PubMed ID: 893830
    [No Abstract]   [Full Text] [Related]  

  • 71. Cytochrome P-450 in the omega-oxidation of fatty acids.
    Orrenius S
    Biochem J; 1969 Dec; 115(5):25P-26P. PubMed ID: 5360680
    [No Abstract]   [Full Text] [Related]  

  • 72. Separation and some characterizations of NADPH-enoyl CoA reductase(s) from Candida albicans.
    Ishidate K; Mizugaki M; Uchiyama M
    Chem Pharm Bull (Tokyo); 1974 Nov; 22(11):2685-91. PubMed ID: 4619583
    [No Abstract]   [Full Text] [Related]  

  • 73. Formation of CoA esters of dihydroxycholanic acids.
    Shah PP; Staple E
    Arch Biochem Biophys; 1969 Jun; 132(1):349-50. PubMed ID: 5797326
    [No Abstract]   [Full Text] [Related]  

  • 74. The electron-transferring flavoprotein as a common intermediate in the mitochondrial oxidation of butyryl coenzyme A and sarcosine.
    Hoskins DD
    J Biol Chem; 1966 Oct; 241(19):4472-9. PubMed ID: 4958817
    [No Abstract]   [Full Text] [Related]  

  • 75. The formation of malonyl-enzyme and its conversion to fatty acids and beta-hydroxy, beta-methyl glutaryl coenzyme A.
    BRODIE JD; WASSON GW; PORTER JW
    Biochem Biophys Res Commun; 1963 Jul; 12():27-33. PubMed ID: 14015676
    [No Abstract]   [Full Text] [Related]  

  • 76. Preparation of malonyl coenzyme A by thioester exchange.
    KLOSS RA; DICKINSON JE
    Biochim Biophys Acta; 1963 Feb; 70():90-1. PubMed ID: 14033626
    [No Abstract]   [Full Text] [Related]  

  • 77. Naturally occurring inhibitor(s) of microsomal oxidations from the house fly.
    Matthews HB; Hodgson E
    J Econ Entomol; 1966 Oct; 59(5):1286-8. PubMed ID: 5915806
    [No Abstract]   [Full Text] [Related]  

  • 78. [2,3-trans-Hexenoyl-CoA-reductase and 2,3-trans-decenoyl-CoA-reductase as components of microsomal, malonyl-CoA-dependent or mitochondrial acetyl CoA dependent chain prolongation of fatty acids].
    Podack ER; Seubert W
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1557. PubMed ID: 4649820
    [No Abstract]   [Full Text] [Related]  

  • 79. On the mechanism and control of the malonyl-CoA-dependent chain elongation of fatty acids. Characterization of hexenoyl-CoA reductase from liver and adrenal cortex as a constituent of the microsomal chain elongation.
    Podack ER; Lakomek M; Saathoff G; Seubert W
    Eur J Biochem; 1974 Jun; 45(1):13-23. PubMed ID: 4420745
    [No Abstract]   [Full Text] [Related]  

  • 80. On the mechanism of malonyl-CoA independent fatty acid synthesis. II. Isolation, properties and subcellular location of trans-2,3-hexenoyl-CoA and trans-2,3-decenoyl-CoA reductase.
    Podack ER; Seubert W
    Biochim Biophys Acta; 1972 Oct; 280(2):235-47. PubMed ID: 4404888
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.