BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 4649848)

  • 1. Spin labeling studies of the effect of ATP, Mg 2+ on mitochondrial membranes.
    Zimmer G; Packer L; Mehlhorn R; Keith A
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1578. PubMed ID: 4649848
    [No Abstract]   [Full Text] [Related]  

  • 2. [Effect of extracellular ATP on the characteristics of synaptosomes from the rat cerebral cortex].
    Korolev AM; Abilova GA; Ashmarin IP
    Tsitologiia; 1981 Sep; 23(9):1008-19. PubMed ID: 7292602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of magnesium and nucleotides on the proton conductance of rat skeletal-muscle mitochondria.
    Cadenas S; Brand MD
    Biochem J; 2000 May; 348 Pt 1(Pt 1):209-13. PubMed ID: 10794733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid-induced Ca(2+)-dependent uncoupling and activation of external pathway of NADH oxidation are coupled to cyclosporin A-sensitive mitochondrial permeability transition.
    Starkov AA; Markova OV; Mokhova EN; Arrigoni-Martelli E; Bobyleva VA
    Biochem Mol Biol Int; 1994 Apr; 32(6):1147-55. PubMed ID: 8061632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of ischemic toxin on membranes].
    Levandovskiĭ IV; Liakhovich VV; Panov AV; Oksman TM; Kovanov VV
    Dokl Akad Nauk SSSR; 1974 Feb; 214(6):1460-2. PubMed ID: 4817555
    [No Abstract]   [Full Text] [Related]  

  • 6. [Study by the spin probe method of ATP-dependent conformational transitions in mitochondrial membranes].
    Kol'tover VK; Raĭkhman LM; Iasaĭtis AA; Bliumenfel'd LA
    Dokl Akad Nauk SSSR; 1971 Mar; 197(1):219-22. PubMed ID: 4326147
    [No Abstract]   [Full Text] [Related]  

  • 7. Mitochondria play an important role in adenosine-induced ATP release from Madin-Darby canine kidney cells.
    Migita K; Zhao Y; Katsuragi T
    Biochem Pharmacol; 2007 May; 73(10):1676-82. PubMed ID: 17328869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspects of mitochondrial function in calcium movement and calcification.
    Schraer R; Elder JA; Schraer H
    Fed Proc; 1973 Sep; 32(9):1938-43. PubMed ID: 4725902
    [No Abstract]   [Full Text] [Related]  

  • 9. The mechanism of energy conservation in the mitochondrial respiratory chain.
    Slater EC
    Harvey Lect; 1971-1972; 66():19-42. PubMed ID: 4949246
    [No Abstract]   [Full Text] [Related]  

  • 10. Bradykinin enhances reactive oxygen species generation, mitochondrial injury, and cell death induced by ATP depletion--a role of the phospholipase C-Ca(2+) pathway.
    Chiang WC; Chen YM; Lin SL; Wu KD; Tsai TJ
    Free Radic Biol Med; 2007 Sep; 43(5):702-10. PubMed ID: 17664134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Stimulation and inhibition induced by N-ethylmaleimide in hydrolysis of ATP in rat liver mitochondria].
    Lofrumento NE; Pavone A; Zanotti F
    Boll Soc Ital Biol Sper; 1980 Sep; 56(18):1817-23. PubMed ID: 7236379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The effect of bivalent metal ions and ATP on the intensity of reductive amination of alpha ketoglutaric acid in the epithelium of cattle rumen].
    Iavonenko OF; Shevriakov MV
    Ukr Biokhim Zh; 1971; 43(5):625-8. PubMed ID: 5154478
    [No Abstract]   [Full Text] [Related]  

  • 13. Matrix Mg2+ regulates mitochondrial ATP-dependent potassium channel from heart.
    Bednarczyk P; Dołowy K; Szewczyk A
    FEBS Lett; 2005 Mar; 579(7):1625-32. PubMed ID: 15757652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostaglandin F2alpha potentiates the calcium dependent activation of mitochondrial metabolism in luteal cells.
    Pitter JG; Szanda G; Duchen MR; Spät A
    Cell Calcium; 2005 Jan; 37(1):35-44. PubMed ID: 15541462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Stable isotopes of Mg2+ as activators of the suppressed ATP-generating function of mitochondria].
    Kuznetsov DA; Arkhantel'skiĭ SE; Berdieva AG; Markarian AA; Khasigov PZ; Gatagonova TM; Ktsova SA; Orlova MA
    Biofizika; 2005; 50(1):80-5. PubMed ID: 15759506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the role and mechanism of IF1 and STF1 proteins, twin inhibitory peptides which interact with the yeast mitochondrial ATP synthase.
    Venard R; Brèthes D; Giraud MF; Vaillier J; Velours J; Haraux F
    Biochemistry; 2003 Jun; 42(24):7626-36. PubMed ID: 12809520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nature and regulation of the ATP-induced anion permeability in Saccharomyces cerevisiae mitochondria.
    Prieto S; Bouillaud F; Rial E
    Arch Biochem Biophys; 1996 Oct; 334(1):43-9. PubMed ID: 8837737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by nilutamide of the mitochondrial respiratory chain and ATP formation. Possible contribution to the adverse effects of this antiandrogen.
    Berson A; Schmets L; Fisch C; Fau D; Wolf C; Fromenty B; Deschamps D; Pessayre D
    J Pharmacol Exp Ther; 1994 Jul; 270(1):167-76. PubMed ID: 8035313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial changes on ATP-treated choroid plexuses.
    Santolaya RC
    Acta Physiol Lat Am; 1970; 20(1):77-80. PubMed ID: 5486941
    [No Abstract]   [Full Text] [Related]  

  • 20. Structure and function of the energy-converting system of mitochondria.
    von Jagow G; Engel WD
    Angew Chem Int Ed Engl; 1980; 19(9):659-75. PubMed ID: 6778262
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.