These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 465025)
1. Effects of neutral salts on thermal stability of spinach ferredoxin. Hasumi H; Nakamura S; Koga K; Yoshizumi H Biochem Biophys Res Commun; 1979 Apr; 87(4):1095-101. PubMed ID: 465025 [No Abstract] [Full Text] [Related]
2. The effects of Na+ and Mg2+ on the thermal denaturation of native and acetylated spinach ferredoxins. Wada K J Biochem; 1979 Dec; 86(6):1747-52. PubMed ID: 528536 [TBL] [Abstract][Full Text] [Related]
3. The low temperature magnetic circular dichroism spectra of iron-sulphur proteins. II. Two-iron ferredoxins. Thomson AJ; Cammack R; Hall DO; Rao KK; Briat B; Rivoal JC; Badoz J Biochim Biophys Acta; 1977 Jul; 493(1):132-41. PubMed ID: 880310 [TBL] [Abstract][Full Text] [Related]
4. Spectrophotometric studies on alkaline isomerization of spinach ferredoxin. Hasumi H; Nagata E; Nakamura S J Biochem; 1985 Oct; 98(4):981-90. PubMed ID: 4077848 [TBL] [Abstract][Full Text] [Related]
5. Further physicochemical studies on the complex formation between iron-sulfur proteins and flavoproteins from spinach chloroplast and beef adrenal cortex electron-transfer systems. Hasumi H; Nakamura S; Koga K; Yoshizumi H; Parcells JH; Kimura T J Biochem; 1982 Jan; 91(1):135-41. PubMed ID: 7068557 [TBL] [Abstract][Full Text] [Related]
6. Non-two-state thermal denaturation of ferricytochrome c at neutral and slightly acidic pH values. Varhač R; Sedláková D; Stupák M; Sedlák E Biophys Chem; 2015; 203-204():41-50. PubMed ID: 26042543 [TBL] [Abstract][Full Text] [Related]
7. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements. Goyal M; Chaudhuri TK; Kuwajima K PLoS One; 2014; 9(12):e115877. PubMed ID: 25548918 [TBL] [Abstract][Full Text] [Related]
8. Properties of spinach ferredoxin in anaerobic urea solution: a comparison with the native protein. Petering DH; Palmer G Arch Biochem Biophys; 1970 Dec; 141(2):456-64. PubMed ID: 4322287 [No Abstract] [Full Text] [Related]
9. Solvent-induced EPR anisotropy change of the non-heme chromophore of spinach ferredoxin. Coffman RE; Stavens BW Biochem Biophys Res Commun; 1970 Oct; 41(1):163-9. PubMed ID: 4318851 [No Abstract] [Full Text] [Related]
10. The conformational stability of the Streptomyces coelicolor histidine-phosphocarrier protein. Characterization of cold denaturation and urea-protein interactions. Neira JL; Gómez J Eur J Biochem; 2004 Jun; 271(11):2165-81. PubMed ID: 15153107 [TBL] [Abstract][Full Text] [Related]
11. Evidence for the presence of a [2Fe-2S] ferredoxin in bean sprouts. Hirasawa M; Sung JD; Malkin R; Zilber A; Droux M; Knaff DB Biochim Biophys Acta; 1988 Jul; 934(2):169-76. PubMed ID: 3390451 [TBL] [Abstract][Full Text] [Related]
12. Studies of the molten globule state of ferredoxin: structural characterization and implications on protein folding and iron-sulfur center assembly. Leal SS; Gomes CM Proteins; 2007 Aug; 68(3):606-16. PubMed ID: 17510960 [TBL] [Abstract][Full Text] [Related]
13. Ferredoxin from the hyperthermophile Thermotoga maritima is stable beyond the boiling point of water. Pfeil W; Gesierich U; Kleemann GR; Sterner R J Mol Biol; 1997 Oct; 272(4):591-6. PubMed ID: 9325114 [TBL] [Abstract][Full Text] [Related]
14. Linear correlation between thermal stability and folding kinetics of lysozyme. Cao A; Wang G; Tang Y; Lai L Biochem Biophys Res Commun; 2002 Mar; 291(4):795-7. PubMed ID: 11866435 [TBL] [Abstract][Full Text] [Related]
16. A two-alpha-helix extra domain mediates the halophilic character of a plant-type ferredoxin from halophilic archaea. Marg BL; Schweimer K; Sticht H; Oesterhelt D Biochemistry; 2005 Jan; 44(1):29-39. PubMed ID: 15628843 [TBL] [Abstract][Full Text] [Related]
17. Ferredoxin: the uses of natural and magnetic circular dichroism in an multi-chromophoric system. Sutherland JC; Salmeen I; Sun AS; Klein MP Biochim Biophys Acta; 1972 May; 263(3):550-4. PubMed ID: 5034208 [No Abstract] [Full Text] [Related]
18. Temperature-induced denaturation of beta-glycosidase from the archaeon Sulfolobus solfataricus. D'Auria S; Rossi M; Barone G; Catanzano F; Del Vecchio P; Graziano G; Nucci R J Biochem; 1996 Aug; 120(2):292-300. PubMed ID: 8889813 [TBL] [Abstract][Full Text] [Related]
19. Differential scanning calorimetric, circular dichroism, and Fourier transform infrared spectroscopic characterization of the thermal unfolding of xylanase A from Streptomyces lividans. Roberge M; Lewis RN; Shareck F; Morosoli R; Kluepfel D; Dupont C; McElhaney RN Proteins; 2003 Feb; 50(2):341-54. PubMed ID: 12486727 [TBL] [Abstract][Full Text] [Related]
20. Model studies on the effects of neutral salts on the conformational stability of biological macromolecules. Von Hippel PH; Hamabata A J Mechanochem Cell Motil; 1973 May; 2(1):127-38. PubMed ID: 4780817 [No Abstract] [Full Text] [Related] [Next] [New Search]