These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 465475)

  • 1. Deoxyribonucleic acid bifunctional intercalators: kinetic investigation of the binding of several acridine dimers to deoxyribonucleic acid.
    Capelle N; Barbet J; Dessen P; Blanquet S; Roques BP; Le Pecq JB
    Biochemistry; 1979 Jul; 18(15):3354-62. PubMed ID: 465475
    [No Abstract]   [Full Text] [Related]  

  • 2. DNA Bifunctional intercalators. 2. Fluorescence properties and DNA binding interaction of an ethidium homodimer and an acridine ethidium heterodimer.
    Gaugain B; Barbet J; Capelle N; Roques BP; Le Pecq JB
    Biochemistry; 1978 Nov; 17(24):5078-88. PubMed ID: 569495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acridine dimers: influence of the intercalating ring and of the linking-chain nature on the equilibrium and kinetic DNA-binding parameters.
    Markovits J; Garbay-Jaureguiberry C; Roques BP; Le Pecq JB
    Eur J Biochem; 1989 Mar; 180(2):359-66. PubMed ID: 2924770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diacridines: bifunctional intercalators. I. Chemistry, physical chemistry and growth inhibitory properties.
    Canellakis ES; Shaw YH; Hanners WE; Schwartz RA
    Biochim Biophys Acta; 1976 Feb; 418(3):277-89. PubMed ID: 1247545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrophotometric and NMR analysis of the interaction of fluorinated mono- and bifunctional intercalators with DNA, poly(dA-dT), and poly(dG-dC).
    Delbarre A; Brown SC; James TL; Shafer RH
    Biopolymers; 1988 Dec; 27(12):1953-75. PubMed ID: 3240361
    [No Abstract]   [Full Text] [Related]  

  • 6. Fluorescence relaxation of proflavin-deoxyribonucleic acid interaction. Kinetic properties of a base-specific reaction.
    Ramstein J; Ehrenberg M; Rigler R
    Biochemistry; 1980 Aug; 19(17):3938-48. PubMed ID: 6773556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proflavin binding to poly[d(A-T)] and poly[d(A-br5U)]: triplet state and temperature-jump kinetics.
    Corin AF; Jovin TM
    Biochemistry; 1986 Jul; 25(14):3995-4007. PubMed ID: 3741843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of inhibition of pyrimidine dimer formation in deoxyribonucleic acid by acridine dyes.
    Sutherland BM; Sutherland JC
    Biophys J; 1969 Mar; 9(3):292-302. PubMed ID: 4888976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between proflavine and chemically methylated deoxyribonucleic acid.
    Ramstein J; Leng M
    Biochim Biophys Acta; 1972 Sep; 281(1):18-32. PubMed ID: 5084326
    [No Abstract]   [Full Text] [Related]  

  • 10. Quantum yields and fluorescence lifetimes of acridine derivatives interacting with DNA.
    Duportail G; Mauss Y; Chambron J
    Biopolymers; 1977 Jul; 16(7):1397-1413. PubMed ID: 880364
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of ring substituents and linker chains on the bifunctional intercalation of diacridines into deoxyribonucleic acid.
    Wright RG; Wakelin LP; Fieldes A; Acheson RM; Waring MJ
    Biochemistry; 1980 Dec; 19(25):5825-36. PubMed ID: 7193050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagen-nucleic acid complexes at the polynucleotide duplex level in solution: intercalation of proflavine into poly(dA-dT) and the melting transition of the complex.
    Patel DJ
    Biopolymers; 1977 Dec; 16(12):2739-54. PubMed ID: 597577
    [No Abstract]   [Full Text] [Related]  

  • 13. THERMAL DENATURATION OF DEOXYRIBONUCLEIC ACID-ACRIDINE ORANGE COMPLEXES.
    KLEINWAECHTER V; KOUDELKA J
    Biochim Biophys Acta; 1964 Nov; 91():539-40. PubMed ID: 14254029
    [No Abstract]   [Full Text] [Related]  

  • 14. INFLUENCE OF HG(II) ON THE METACHROMATIC COMPLEXES OF DEOXYRIBONUCLEIC ACID WITH ACRIDINE ORANGE.
    KOUDELKA J; KLEINWAECHTER V; BLAZICEK G
    Biochim Biophys Acta; 1964 Oct; 91():337-40. PubMed ID: 14240655
    [No Abstract]   [Full Text] [Related]  

  • 15. Antitumour polycyclic acridines. Part 2. Physicochemical studies on the interactions between DNA and novel polycyclic acridine derivatives.
    Giménez-Arnau E; Missailidis S; Stevens MF
    Anticancer Drug Des; 1998 Mar; 13(2):125-43. PubMed ID: 9524555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential antitumor agents. 44. Synthesis and antitumor activity of new classes of diacridines: importance of linker chain rigidity for DNA binding kinetics and biological activity.
    Denny WA; Atwell GJ; Baguley BC; Wakelin LP
    J Med Chem; 1985 Nov; 28(11):1568-74. PubMed ID: 4067986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrinsic Cotton effects of acridine orange bound to native, denatured and formylated deoxyribonucleic acid.
    Resnik RA; Yamaoka K
    Biochem Biophys Res Commun; 1970 Nov; 41(4):952-7. PubMed ID: 5477230
    [No Abstract]   [Full Text] [Related]  

  • 18. A comparison of the interaction of an acridine dye and a triphenylmethane dye with deoxyribonucleic acid.
    Armstrong RW; Panzer NM
    J Am Chem Soc; 1972 Nov; 94(22):7650-3. PubMed ID: 5076752
    [No Abstract]   [Full Text] [Related]  

  • 19. Interactions of intercalative and minor groove binding ligands with triplex poly(dA).[poly(dT)]2 and with duplex poly(dA).poly(dT) and poly[d(A-T)]2 studied by CD, LD, and normal absorption.
    Kim HK; Kim JM; Kim SK; Rodger A; Nordén B
    Biochemistry; 1996 Jan; 35(4):1187-94. PubMed ID: 8573573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of the interaction between echinomycin and deoxyribonucleic acid.
    Fox KR; Wakelin LP; Waring MJ
    Biochemistry; 1981 Sep; 20(20):5768-79. PubMed ID: 7295702
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.