These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 4655453)
1. Activation of brain hexokinase by magnesium ions and by magnesium ion--adenosine triphosphate complex. Purich DL; Fromm HJ Biochem J; 1972 Nov; 130(1):63-9. PubMed ID: 4655453 [TBL] [Abstract][Full Text] [Related]
2. Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion--adenosine triphosphate complex. Bachelard HS Biochem J; 1971 Nov; 125(1):249-54. PubMed ID: 5158910 [TBL] [Abstract][Full Text] [Related]
3. Cerebral-cortex hexokinase. Elucidation of reaction mechanisms by substrate and dead-end inhibitor kinetic analysis. Bachelard HS; Clark AG; Thompson MF Biochem J; 1971 Aug; 123(5):707-15. PubMed ID: 5124380 [TBL] [Abstract][Full Text] [Related]
4. Effects of magnesium, manganese and adenosine triphosphate ions on pyruvate carboxylase from baker's yeast. Cazzulo JJ; Stoppani AO Biochem J; 1969 May; 112(5):747-54. PubMed ID: 5822065 [TBL] [Abstract][Full Text] [Related]
5. A kinetic method for determining dissociation constants for metal complexes of adenosine 5'-triphosphate and adenosine 5'-diphosphate. Morrison JF; Cleland WW Biochemistry; 1980 Jul; 19(14):3127-31. PubMed ID: 7407034 [TBL] [Abstract][Full Text] [Related]
6. Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase. Danenberg KD; Cleland WW Biochemistry; 1975 Jan; 14(1):28-39. PubMed ID: 1089014 [TBL] [Abstract][Full Text] [Related]
7. Kinetic studies of rat liver hexokinase D ('glucokinase') in non-co-operative conditions show an ordered mechanism with MgADP as the last product to be released. Monasterio O; Cárdenas ML Biochem J; 2003 Apr; 371(Pt 1):29-38. PubMed ID: 12513690 [TBL] [Abstract][Full Text] [Related]
8. pH-dependent effects of Cr(NH3)2ATP on kinetics of yeast hexokinase PII. Relationship to the slow transition mechanism. Peters BA; Neet KE J Biol Chem; 1976 Dec; 251(23):7521-5. PubMed ID: 12169 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic origin of the sigmoidal rate behaviour of rat liver hexokinase D ('glucokinase'). Cornish-Bowden A; Storer AC Biochem J; 1986 Nov; 240(1):293-6. PubMed ID: 3493769 [TBL] [Abstract][Full Text] [Related]
11. Adenine nucleotides and magnesium ions in relation to control of mammalian cerebral-cortex hexokinase. Bachelard HS; Goldfarb PS Biochem J; 1969 May; 112(5):579-86. PubMed ID: 5822062 [TBL] [Abstract][Full Text] [Related]
12. Allosteric inhibition of brain hexokinase by glucose 6-phosphate in the reverse reaction. Ureta T; Lazo PA; Sols A Arch Biochem Biophys; 1985 Jun; 239(2):315-9. PubMed ID: 4004267 [TBL] [Abstract][Full Text] [Related]
13. Kinetic study of yeast hexokinase. Inhibition of the reaction by magnesium and ATP. Noat G; Ricard J; Borel M; Got C Eur J Biochem; 1970 Apr; 13(2):347-63. PubMed ID: 5439937 [No Abstract] [Full Text] [Related]
14. Kinetic co-operativity of monomeric mnemonical enzymes. The significance of the kinetic Hill coefficient. Ricard J; Noat G Eur J Biochem; 1985 Nov; 152(3):557-64. PubMed ID: 4054121 [TBL] [Abstract][Full Text] [Related]
15. The interaction of phosphorylated sugars with human hexokinase I. Magnani M; Stocchi V; Serafini G; Chiarantini L Biochim Biophys Acta; 1988 Jun; 954(3):336-42. PubMed ID: 3259434 [TBL] [Abstract][Full Text] [Related]
17. Adenosine 5'-triphosphate sulphurylase from Saccharomyces cerevisiae. Hawes CS; Nicholas DJ Biochem J; 1973 Jul; 133(3):541-50. PubMed ID: 4582048 [TBL] [Abstract][Full Text] [Related]
18. Glucose binding isotope effects in the ternary complex of brain hexokinase demonstrate partial relief of ground-state destabilization. Lewis BE; Schramm VL J Am Chem Soc; 2003 Apr; 125(16):4672-3. PubMed ID: 12696861 [TBL] [Abstract][Full Text] [Related]
19. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum? Smith GA; Vandenberg JI; Freestone NS; Dixon HB Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858 [TBL] [Abstract][Full Text] [Related]