BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 4655454)

  • 1. Polyamine biogenesis in the rat mammary gland during pregnancy and lactation.
    Russell DH; McVicker TA
    Biochem J; 1972 Nov; 130(1):71-6. PubMed ID: 4655454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of starvation and refeeding on polyamine concentrations and ornithine decarboxylase antizyme in mammary gland of lactating rats.
    Brosnan ME; Farrell R; Wilansky H; Williamson DH
    Biochem J; 1983 Apr; 212(1):149-53. PubMed ID: 6191757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentrations of putrescine and polyamines and their enzymic synthesis during androgen-induced prostatic growth.
    Pegg AE; Lockwood DH; Williams-Ashman HG
    Biochem J; 1970 Mar; 117(1):17-31. PubMed ID: 5420953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spermine is major polyamine in sea urchins: studies of polyamines and their synthesis in developing sea urchins.
    Manen CA; Russell DH
    J Embryol Exp Morphol; 1973 Apr; 29(2):331-45. PubMed ID: 4717972
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of inhibitors of ornithine and S-adenosylmethionine decarboxylases on L6 myoblast proliferation.
    Stoscheck CM; Erwin BG; Florini JR; Richman RA; Pegg AE
    J Cell Physiol; 1982 Feb; 110(2):161-8. PubMed ID: 6802862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of casein synthesis by polyamines in mammary gland explants of mice.
    Rillema JA; Linebaugh BE; Mulder JA
    Endocrinology; 1977 Feb; 100(2):529-36. PubMed ID: 188630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of ornithine decarboxylase in cultured mouse mammary gland by the osmolarity in the cellular environment.
    Perry JW; Oka T
    Biochim Biophys Acta; 1980 Apr; 629(1):24-35. PubMed ID: 6989407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect evidence for a strict negative control of S-adenosyl-L-methionine decarboxylase by spermidine in rat hepatoma cells.
    Mamont PS; Joder-Ohlenbusch AM; Nussli M; Grove J
    Biochem J; 1981 May; 196(2):411-22. PubMed ID: 6797404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyamine synthesis in the regenerating rat liver: stimulation of S-adenosyl methionine decarboxylase, and spermidine and spermine synthases after partial hepatectomy.
    Hannonen P; Raina A; Jänne J
    Biochim Biophys Acta; 1972 Jun; 273(1):84-90. PubMed ID: 5038292
    [No Abstract]   [Full Text] [Related]  

  • 10. Polyamine concentration in rat milk and food, human milk, and infant formulas.
    Romain N; Dandrifosse G; Jeusette F; Forget P
    Pediatr Res; 1992 Jul; 32(1):58-63. PubMed ID: 1635846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ornithine decarboxylase and polyamines in silkmoth pupal tissues: effects of ecdysone and injury.
    Wyatt GR; Rothaus K; Lawler D; Herbst EJ
    Biochim Biophys Acta; 1973 Apr; 304(2):482-94. PubMed ID: 4122947
    [No Abstract]   [Full Text] [Related]  

  • 12. Putrescine and the regulation of S-adenosyl-L-methionine decarboxylase in cultured mouse mammary gland.
    Sakai T; Perry JW; Hori C; Oka T
    Biochim Biophys Acta; 1980 Aug; 614(2):577-82. PubMed ID: 6996734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkaline ribonuclease and ribonuclease inhibitor in mammary gland during the lactation cycle and in the R3230AC mammary tumour.
    Liu DK; Williams GH; Fritz PJ
    Biochem J; 1975 Apr; 148(1):67-76. PubMed ID: 1156401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imbalance in ornithine metabolism in hepatomas of different growth rates as expressed in formation of putrescine, spermidine, and spermine.
    Williams-Ashman HG; Coppoc GL; Weber G
    Cancer Res; 1972 Sep; 32(9):1924-32. PubMed ID: 4345041
    [No Abstract]   [Full Text] [Related]  

  • 15. Polyamine biosynthesis in the developing rabbit palate.
    Mandella RD
    J Craniofac Genet Dev Biol; 1985; 5(1):31-40. PubMed ID: 2580853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses.
    Wang X; Ying W; Dunlap KA; Lin G; Satterfield MC; Burghardt RC; Wu G; Bazer FW
    Biol Reprod; 2014 Apr; 90(4):84. PubMed ID: 24648395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of S-adenosyl-1,8-diamino-3-thio-octane and S-methyl-5'-methylthioadenosine on polyamine synthesis in Ehrlich ascites-tumour cells.
    Holm I; Persson L; Pegg AE; Heby O
    Biochem J; 1989 Jul; 261(1):205-10. PubMed ID: 2775206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamine biosynthesis and DNA synthesis in cultured mammary gland explants from virgin mice.
    Sakai T; Lundgren DW; Oka T
    J Cell Physiol; 1978 Jun; 95(3):259-67. PubMed ID: 565785
    [No Abstract]   [Full Text] [Related]  

  • 19. Thyroid function and polyamines. II. Thyrotropin stimulation of polyamine biosynthesis in the rat thyroid.
    Matsuzaki S; Suzuki M
    Endocrinol Jpn; 1975 Aug; 22(4):339-45. PubMed ID: 811458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of DL-alpha-hydrazino-delta-aminovaleric acid, an inhibitor of ornithine decarboxylase, on polyamine metabolism and growth of mouse sarcoma-180.
    Kato Y; Inoue H; Gohda E; Tamada F; Takeda Y
    Gan; 1976 Aug; 67(4):569-76. PubMed ID: 1024852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.