These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 4655664)

  • 1. A continuum mechanical approach to the flow equations for membrane transport. I. Water flow.
    Mikulecky DC
    Biophys J; 1972 Dec; 12(12):1642-60. PubMed ID: 4655664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forces and stresses acting on fusion pore membrane during secretion.
    Tajparast M; Glavinović MI
    Biochim Biophys Acta; 2009 May; 1788(5):1009-23. PubMed ID: 19366587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of the permeability of biological membranes. Application to the glomerular wall.
    Verniory A; Du Bois R; Decoodt P; Gassee JP; Lambert PP
    J Gen Physiol; 1973 Oct; 62(4):489-507. PubMed ID: 4755850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the relative contribution of viscous flow vs. diffusional (frictional) flow to the stationary state flow of water through a "tight" membrane.
    Mikulecky DC
    Biophys J; 1967 Sep; 7(5):527-34. PubMed ID: 6048875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic flow equations for leaky porous membranes.
    Hill AE
    Proc R Soc Lond B Biol Sci; 1989 Aug; 237(1288):369-77. PubMed ID: 2571158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of diffusion and convection in 3.2-A pores. Exact solution by computer simulation.
    Levitt DG
    Biophys J; 1973 Feb; 13(2):186-206. PubMed ID: 4702015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Gibbs-Duhem equation in membrane transport.
    Tomicki B
    Eur Biophys J; 1989; 17(3):137-42. PubMed ID: 2792022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global flow equations for membrane transport from local equations of motion: I. The general case for (n-1) nonelectrolyte solutes plus water.
    Mikulecky DC
    Bull Math Biol; 1978; 40(6):791-805. PubMed ID: 743571
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on electrochemical characterization and performance prediction of cellulose acetate and Zeocarb-225 composite membranes in aqueous NaCl solutions.
    Tiwari AK; Ahmad S
    J Colloid Interface Sci; 2006 Jun; 298(1):274-81. PubMed ID: 16499917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The thermodynamic and hydrodynamic properties of macromolecules that influence the hydrodynamics of porous systems.
    Comper WD
    J Theor Biol; 1994 Jun; 168(4):421-7. PubMed ID: 8072300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global flow equations for membrane transport from local equations of motion-II. The case of a single nonelectrolyte solute plus water.
    Mikulecky DC
    Bull Math Biol; 1979; 41(5):629-40. PubMed ID: 540180
    [No Abstract]   [Full Text] [Related]  

  • 12. Examination of transport equations pertaining to permeable elastic tubules such as Henle's loop.
    Basmadjian D; Baines AD
    Biophys J; 1978 Dec; 24(3):629-43. PubMed ID: 737282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfers between free and combined oxygen flows in determining facilitated transport with membranes on the transport path.
    Gonzalez-Fernandez JM
    Math Biosci; 1989 Aug; 95(2):209-31. PubMed ID: 2520187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion-induced convective gas flow through the pores of the eggshell.
    Paganelli CV; Ar A; Rahn H
    J Exp Zool Suppl; 1987; 1():173-80. PubMed ID: 3598489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equations for membrane transport. Experimental and theoretical tests of the frictional model.
    Daneshpajooh MH; Mason EA; Bresler EH; Wendt RP
    Biophys J; 1975 Jun; 15(6):591-613. PubMed ID: 1148361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalization of the Spiegler-Kedem-Katchalsky frictional model equations of the transmembrane transport for multicomponent non-electrolyte solutions.
    Slezak A; Turczyński B
    Biophys Chem; 1992 Oct; 44(3):139-42. PubMed ID: 1420944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rate theory models for ion transport through rigid pores. I. Time-dependent analysis in the case of vanishing interactions.
    Frehland E; Stephan W
    J Theor Biol; 1983 Jul; 103(1):77-97. PubMed ID: 6621070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton transport across charged membrane and pH oscillations.
    Chay TR
    Biophys J; 1980 Apr; 30(1):99-118. PubMed ID: 7260272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2013 Mar; 138(12):124701. PubMed ID: 23556736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation of unstirred-layer transport number equations from the Nernst-Planck flux equations.
    Barry PH
    Biophys J; 1998 Jun; 74(6):2903-5. PubMed ID: 9635743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.