These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 4656107)

  • 1. The effect of close arterial infusion of noradrenaline on the hyperemia following short-term compared with prolonged forearm exercise.
    Eklund B; Kaijser L
    Life Sci I; 1972 Sep; 11(18):877-82. PubMed ID: 4656107
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of close arterial infusion of isoproterenol and phentolamine on the blood flow following short-term and prolonged forearm work.
    Eklund B; Kaijser L
    Res Commun Chem Pathol Pharmacol; 1974 May; 8(1):91-9. PubMed ID: 4847909
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of arm dominance and brachial artery cannulation on forearm blood flow measured by strain-gauge plethysmography.
    Kamper AM; Chang PC
    Clin Sci (Lond); 1999 Nov; 97(5):539-46. PubMed ID: 10545304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of intra-arterial endothelin on resting blood flow and sympathetically mediated vasoconstriction in the forearm of man.
    Cockcroft JR; Clarke JG; Webb DJ
    Br J Clin Pharmacol; 1991 May; 31(5):521-4. PubMed ID: 1888618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of noradrenaline and of increased sympathetic activity on the hyperemia following short and prolonged forearm work.
    Kaijser L; Eklund B
    Scand J Clin Lab Invest; 1974 Feb; 33(1):53-61. PubMed ID: 4827759
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of noradrenaline on muscle blood flow measured by 133-Xe-washout at rest and during post-exercise hyperemia in man.
    Bernstein K; White T
    Scand J Clin Lab Invest; 1974 Dec; 34(4):311-4. PubMed ID: 4460226
    [No Abstract]   [Full Text] [Related]  

  • 7. Forearm blood flow responses to neuropeptide Y, noradrenaline and adenosine 5'-triphosphate in hypertensive and normotensive subjects.
    Nilsson T; Hrafnkelsdóttir T; Edvinsson L; Jern S; Erlinge D; Wall U
    Blood Press; 2000; 9(2-3):126-31. PubMed ID: 10855736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forearm blood flow during prolonged intra-arterial infusions of adrenaline, and the effects of intra-arterial adrenaline on post-exercise hyperaemia.
    GLOVER WE; SHANKS RG
    J Physiol; 1963 Jul; 167(2):268-79. PubMed ID: 13948519
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of nitric oxide in reactive hyperemia in human forearm vessels.
    Tagawa T; Imaizumi T; Endo T; Shiramoto M; Harasawa Y; Takeshita A
    Circulation; 1994 Nov; 90(5):2285-90. PubMed ID: 7955185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of regional blood flow and oxygen utilization during dynamic forearm exercise in normal subjects and patients with congestive heart failure.
    Zelis R; Longhurst J; Capone RJ; Mason DT
    Circulation; 1974 Jul; 50(1):137-43. PubMed ID: 4835259
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of prostaglandin E1 on forearm blood flow.
    Bevegård S; Orö L
    Scand J Clin Lab Invest; 1969 Jun; 23(4):347-53. PubMed ID: 4986444
    [No Abstract]   [Full Text] [Related]  

  • 12. Experiments on the liberation of phosphate from the muscles of the human forearm during vigorous exercise and on the action of sodium phosphate on forearm muscle blood vessels.
    Barcroft H; Foley TH; McSwiney RR
    J Physiol; 1971 Mar; 213(2):411-20. PubMed ID: 5574845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of tolerance in forearm blood vessels in man to glyceryl trinitrate.
    Cheesman AR; Benjamin N
    Br J Clin Pharmacol; 1994 May; 37(5):441-4. PubMed ID: 8054249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of candesartan on vascular responses to angiotensin II and norepinephrine in normal volunteers.
    Tran D; Phoon S; Howes L
    J Renin Angiotensin Aldosterone Syst; 2001 Sep; 2(3):199-203. PubMed ID: 11881123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow dependence of forearm noradrenaline overflow, as assessed during mental stress and sodium nitroprusside infusion.
    Lindqvist M; Melcher A; Hjemdahl P
    J Hypertens; 1999 Jan; 17(1):91-7. PubMed ID: 10100099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of changes in volume of a congested limb as a means of studying the behaviour of capacity vessels.
    Ardill BL; Bhatnagar VM; Fentem PH
    J Physiol; 1968 Feb; 194(3):627-44. PubMed ID: 4295263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the ATP-dependent potassium channel attenuates norepinephrine-induced vasoconstriction in the human forearm.
    Pickkers P; Jansen Van Rosendaal AJ; Van Der Hoeven JG; Smits P
    Shock; 2004 Oct; 22(4):320-5. PubMed ID: 15377886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the effects of vasodilator stimuli on peripheral resistance vessels in normal subjects and in patients with congestive heart failure.
    Zelis R; Mason DT; Braunwald E
    J Clin Invest; 1968 Apr; 47(4):960-70. PubMed ID: 5641631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of nitric oxide in exercise-induced vasodilation of the forearm.
    Endo T; Imaizumi T; Tagawa T; Shiramoto M; Ando S; Takeshita A
    Circulation; 1994 Dec; 90(6):2886-90. PubMed ID: 7994834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimodal distribution of vasodilator responsiveness to adenosine due to difference in nitric oxide contribution: implications for exercise hyperemia.
    Martin EA; Nicholson WT; Eisenach JH; Charkoudian N; Joyner MJ
    J Appl Physiol (1985); 2006 Aug; 101(2):492-9. PubMed ID: 16614358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.