These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4656929)

  • 1. Aspects of differentiation and function of cilia and adjacent structures of the sea urchin larva.
    Immers J; Lundgren B
    Acta Embryol Exp (Palermo); 1972; 2():177-97. PubMed ID: 4656929
    [No Abstract]   [Full Text] [Related]  

  • 2. Cytoplasmic and nuclear basic protein synthesis during early sea urchin development.
    Johnson AW; Hnilica LS
    Biochim Biophys Acta; 1971 Aug; 246(1):141-54. PubMed ID: 5123565
    [No Abstract]   [Full Text] [Related]  

  • 3. Sea urchin embryonic cilia.
    Morris RL; Vacquier VD
    Methods Cell Biol; 2019; 150():235-250. PubMed ID: 30777178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synthetic derivative of plant allylpolyalkoxybenzenes induces selective loss of motile cilia in sea urchin embryos.
    Semenova MN; Tsyganov DV; Yakubov AP; Kiselyov AS; Semenov VV
    ACS Chem Biol; 2008 Feb; 3(2):95-100. PubMed ID: 18278850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fixed metabolic costs for highly variable rates of protein synthesis in sea urchin embryos and larvae.
    Pace DA; Manahan DT
    J Exp Biol; 2006 Jan; 209(Pt 1):158-70. PubMed ID: 16354787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in codon recognition and chromatographic behaviour of tRNA species during embryonic development of the sea urchin Paracentrotus lividus.
    Molinaro M; Farace MG
    J Exp Zool; 1972 Aug; 181(2):223-31. PubMed ID: 5047363
    [No Abstract]   [Full Text] [Related]  

  • 7. Investigation of the mode of nuclear control over protein synthesis in early development of loach and sea urchin.
    Krigsgaber MR; Neyfakh AA
    J Embryol Exp Morphol; 1972 Dec; 28(3):491-509. PubMed ID: 4676276
    [No Abstract]   [Full Text] [Related]  

  • 8. Cellular analyses of sea urchin metamorphosis.
    Sato Y; Yazaki I
    Zygote; 2000; 8 Suppl 1():S77-8. PubMed ID: 11191330
    [No Abstract]   [Full Text] [Related]  

  • 9. Synthesis of nuclear and cytoplasmic proteins in the early development of fishes and echinoderms.
    Krigsgaber MR; Kostomarova AA; Terekhova TA; Burakova TA
    J Embryol Exp Morphol; 1971 Dec; 26(3):611-22. PubMed ID: 5148719
    [No Abstract]   [Full Text] [Related]  

  • 10. Early cyclical changes in polyamine synthesis during sea-urchin development.
    Manen CA; Russell DH
    J Embryol Exp Morphol; 1973 Aug; 30(1):243-56. PubMed ID: 4729948
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of nervous system mediators in individual development.
    Buznikov GA
    Sov J Dev Biol; 1971; 2(1):1-7. PubMed ID: 5170753
    [No Abstract]   [Full Text] [Related]  

  • 12. Nuclear basic protein acetylation during early sea urchin development.
    Johnson AW; Wilhelm JA; Hnilica LS
    Biochim Biophys Acta; 1973 Jan; 295(1):150-8. PubMed ID: 4685068
    [No Abstract]   [Full Text] [Related]  

  • 13. Intermediary metabolism in sea urchin: the first inferences from the genome sequence.
    Goel M; Mushegian A
    Dev Biol; 2006 Dec; 300(1):282-92. PubMed ID: 16979151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High macromolecular synthesis with low metabolic cost in Antarctic sea urchin embryos.
    Marsh AG; Maxson RE; Manahan DT
    Science; 2001 Mar; 291(5510):1950-2. PubMed ID: 11239152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, expression, and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule.
    Harkey MA; Klueg K; Sheppard P; Raff RA
    Dev Biol; 1995 Apr; 168(2):549-66. PubMed ID: 7537234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the regeneration of sea-urchin cilia.
    Burns RG
    J Cell Sci; 1973 Jul; 13(1):55-67. PubMed ID: 4729939
    [No Abstract]   [Full Text] [Related]  

  • 17. Molecular chaperones in cilia and flagella: implications for protein turnover.
    Stephens RE; Lemieux NA
    Cell Motil Cytoskeleton; 1999 Dec; 44(4):274-83. PubMed ID: 10602256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione transferase theta in apical ciliary tuft regulates mechanical reception and swimming behavior of Sea Urchin Embryos.
    Jin Y; Yaguchi S; Shiba K; Yamada L; Yaguchi J; Shibata D; Sawada H; Inaba K
    Cytoskeleton (Hoboken); 2013 Aug; 70(8):453-70. PubMed ID: 23907936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Lipid peroxidation in embryos and larva of sea urchin Strongylocentrotus intermedius].
    Luk'ianova ON; Annikova LV; Deridovich II
    Zh Evol Biokhim Fiziol; 2000; 36(2):88-91. PubMed ID: 10925845
    [No Abstract]   [Full Text] [Related]  

  • 20. Participation of the sulfhydryl groups of a protein in the cyclic variation in the rat of protein synthesis in a cell-free system from sea urchin cells.
    Mano Y
    Arch Biochem Biophys; 1971 Sep; 146(1):237-48. PubMed ID: 5144028
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.