These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 4657135)

  • 41. The metabolism of protocatechuate by Pseudomonas testosteroni.
    Dagley S; Geary PJ; Wood JM
    Biochem J; 1968 Oct; 109(4):559-68. PubMed ID: 5683506
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The coexistence of two pathways for the metabolism of 2-hydroxymuconic semialdehyde in a naphthalene-grown pseudomonad.
    Catterall FA; Sala-Trepat JM; Williams PA
    Biochem Biophys Res Commun; 1971 May; 43(3):463-9. PubMed ID: 4327441
    [No Abstract]   [Full Text] [Related]  

  • 43. The regulation of the enzymes of aromatic-ring fission in an actinomycete.
    Rann DL; Cain RB
    Biochem J; 1969 Oct; 114(4):77P. PubMed ID: 5343783
    [No Abstract]   [Full Text] [Related]  

  • 44. The regulation of enzymes of aromatic-ring fission in fungi: organisms using both catechol and protocatechuate pathways.
    Halsall BE; Darrah JA; Cain RB
    Biochem J; 1969 Oct; 114(4):75P-76P. PubMed ID: 5343779
    [No Abstract]   [Full Text] [Related]  

  • 45. The metabolism of aromatic acids by Pseudomonas testosteroni and P. acidovorans.
    Wheelis ML; Palleroni NJ; Stanier RY
    Arch Mikrobiol; 1967; 59(1):302-14. PubMed ID: 5602468
    [No Abstract]   [Full Text] [Related]  

  • 46. A mutant of Pseudomonas putida with altered regulation of the enzymes for degradation of phenol and cresols.
    Wigmore GJ; Bayly RC
    Biochem Biophys Res Commun; 1974 Sep; 60(1):48-55. PubMed ID: 4371622
    [No Abstract]   [Full Text] [Related]  

  • 47. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid.
    Williams PA; Murray K
    J Bacteriol; 1974 Oct; 120(1):416-23. PubMed ID: 4418209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate.
    Schlömann M; Fischer P; Schmidt E; Knackmuss HJ
    J Bacteriol; 1990 Sep; 172(9):5119-29. PubMed ID: 2394680
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolism of 5-hydroxy-4-keto-valeric acid in the rat.
    Wang FK; Koch J; Stokstad EL
    Biochem Biophys Res Commun; 1970 Aug; 40(3):576-82. PubMed ID: 5492154
    [No Abstract]   [Full Text] [Related]  

  • 50. Regulation of the meta cleavage pathway for benzoate oxidation by Pseudomonas putida.
    Feist CF; Hegeman GD
    J Bacteriol; 1969 Nov; 100(2):1121-3. PubMed ID: 5359614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Participation of the beta-ketoadipate transport system in chemotaxis.
    Karimian M; Ornston LN
    J Gen Microbiol; 1981 May; 124(1):25-8. PubMed ID: 7320700
    [TBL] [Abstract][Full Text] [Related]  

  • 52. From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway.
    Blasco R; Wittich RM; Mallavarapu M; Timmis KN; Pieper DH
    J Biol Chem; 1995 Dec; 270(49):29229-35. PubMed ID: 7493952
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dissimilation of aromatic compounds by Alcaligenes eutrophus.
    Johnson BF; Stanier RY
    J Bacteriol; 1971 Aug; 107(2):468-75. PubMed ID: 5113598
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enzymes of the beta-ketoadipate pathway in Pseudomonas putida: primary and secondary kinetic and equilibrium deuterium isotope effects upon the interconversion of (+)-muconolactone to cis,cis-muconate catalyzed by cis,cis-muconate cycloisomerase.
    Ngai KL; Kallen RG
    Biochemistry; 1983 Oct; 22(22):5231-6. PubMed ID: 6652063
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Comparative study of 2 beta-ketoadipate succinyl-CoA transferases in Pseudomonas fluorescens].
    Hoet P; Wiame JM
    Arch Int Physiol Biochim; 1969 Dec; 77(5):966-7. PubMed ID: 4190899
    [No Abstract]   [Full Text] [Related]  

  • 56. Biological distribution and physiological role of the beta-ketoadipate transport system.
    Ondrako JM; Ornston LN
    J Gen Microbiol; 1980 Sep; 120(1):199-209. PubMed ID: 7217919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phthalate metabolism in Pseudomonas testosteroni: accumulation of 4,5-dihydroxyphthalate by a mutant strain.
    Nakazawa T; Hayashi E
    J Bacteriol; 1977 Jul; 131(1):42-8. PubMed ID: 873893
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro reconstitution of the catabolic reactions catalyzed by PcaHG, PcaB, and PcaL: the protocatechuate branch of the β-ketoadipate pathway in Rhodococcus jostii RHA1.
    Yamanashi T; Kim SY; Hara H; Funa N
    Biosci Biotechnol Biochem; 2015; 79(5):830-5. PubMed ID: 25558786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enzymatic degradation of beta-ketoadipic acid.
    KATAGIRI M; HAYAISHI O
    J Biol Chem; 1957 May; 226(1):439-48. PubMed ID: 13428776
    [No Abstract]   [Full Text] [Related]  

  • 60. The oxidative degradation of benzoate and catechol by Klebsiella aerogenes (Aerobacter aerogenes).
    Grant DJ
    Antonie Van Leeuwenhoek; 1970; 36(1):161-77. PubMed ID: 4987140
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.