BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 4661754)

  • 1. Influence of dietary lipid on rat liver mitochondrial fatty acid oxidase.
    Katki AG; Magar NG
    Indian J Biochem Biophys; 1972 Jun; 9(2):156-8. PubMed ID: 4661754
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of dietary lipid on rat liver mitochondrial oxidative phosphorylation & adenosine triphosphatase.
    Katki AG; Magar NG
    Indian J Biochem Biophys; 1972 Jun; 9(2):151-5. PubMed ID: 4267692
    [No Abstract]   [Full Text] [Related]  

  • 3. [Inhibition of the hepatic oxidation of fatty acids and ketogenesis by beta-mercaptoethanol].
    Nordmann R; Sabourault D; Nordmann J
    C R Seances Soc Biol Fil; 1971; 165(6):1262-5. PubMed ID: 4262025
    [No Abstract]   [Full Text] [Related]  

  • 4. Differential induction of peroxisomal oxidation of palmitic acid and 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid in rat liver.
    Ostlund Farrants AK; Björkhem I; Pedersen JI
    Biochim Biophys Acta; 1990 Sep; 1046(2):173-7. PubMed ID: 2223856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the hypoglycaemic compound cyclopropanecarboxylic acid. Effects on fatty acid oxidation in vitro.
    Duncombe WG; Rising TJ
    Biochem Pharmacol; 1972 Apr; 21(8):1075-88. PubMed ID: 5034196
    [No Abstract]   [Full Text] [Related]  

  • 6. Oxidation of extramitochondrial NADH by rat liver mitochondria. Possible role of ACYL-SCoA elongation enzymes.
    Grunnet N
    Biochem Biophys Res Commun; 1970 Nov; 41(4):909-17. PubMed ID: 4320070
    [No Abstract]   [Full Text] [Related]  

  • 7. Regulation of polyunsaturated fatty acid biosynthesis in the rat.
    Sprecher HW
    Fed Proc; 1972; 31(5):1451-7. PubMed ID: 5056171
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of dietary lipid level on fatty acid beta-oxidation and lipid composition in various tissues of haddock, Melanogrammus aeglefinus L.
    Nanton DA; Lall SP; Ross NW; McNiven MA
    Comp Biochem Physiol B Biochem Mol Biol; 2003 May; 135(1):95-108. PubMed ID: 12781977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical effects of the hypoglycaemic compound pent--4-enoic acid and related non-hypoglycaemic fatty acids.
    Senior AE; Robson B; Sherratt HS
    Biochem J; 1968 Dec; 110(3):511-9. PubMed ID: 5701681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the nature of endogenous substrate in rat-liver mitochondria.
    Bryla J; Kaniuga Z; Frackowiak B
    Biochim Biophys Acta; 1967 Sep; 143(2):285-91. PubMed ID: 4292886
    [No Abstract]   [Full Text] [Related]  

  • 11. [Influence of the type of feed fats on the fatty acid pattern in liver lipids and on the vitamin A and E contents of the liver of laying hens].
    Vogtmann H; Prabucki AL
    Int J Vitam Nutr Res; 1971; 41(1):33-41. PubMed ID: 5125375
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of fatty acid binding protein on the metabolism of fatty acids in isolated rat hepatocytes.
    Wu-Rideout MY; Elson C; Shrago E
    Biochem Biophys Res Commun; 1976 Aug; 71(3):809-16. PubMed ID: 962957
    [No Abstract]   [Full Text] [Related]  

  • 13. Fatty acid oxidation, oxidative phosphorylation and ultrastructure of mitochondria in the diabetic rat liver. Hepatic factors in diabetic ketosis.
    Harano Y; DePalma RG; Lavine L; Miller M
    Diabetes; 1972 May; 21(5):257-70. PubMed ID: 5022135
    [No Abstract]   [Full Text] [Related]  

  • 14. The effects of ketone bodies, bicarbonate, and calcium on hepatic mitochondrial ketogenesis.
    Roeder LM; Tildon JT; Reed WD; Ozand PT
    Arch Biochem Biophys; 1982 Sep; 217(2):460-7. PubMed ID: 7138017
    [No Abstract]   [Full Text] [Related]  

  • 15. Inhibition by perhexiline of oxidative phosphorylation and the beta-oxidation of fatty acids: possible role in pseudoalcoholic liver lesions.
    Deschamps D; DeBeco V; Fisch C; Fromenty B; Guillouzo A; Pessayre D
    Hepatology; 1994 Apr; 19(4):948-61. PubMed ID: 8138270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-dependent control of the tricarboxylic acid cycle by fatty acid oxidation in rat liver mitochondria.
    Garland PB; Shepherd D; Nicholls DG; Ontko J
    Adv Enzyme Regul; 1968; 6():3-30. PubMed ID: 5720339
    [No Abstract]   [Full Text] [Related]  

  • 17. Exchange of palmitic acid from cytosolic proteins to microsomes, mitochondria and lipid vesicles.
    Avanzati B; Catalá A
    Acta Physiol Lat Am; 1982; 32(4):267-76. PubMed ID: 7186743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of hepatic fatty acid oxidation by 5-methoxyindole-2-carboxylic acid.
    Corkey BE; Peterson MJ; Pereira JN; Mayhew DA
    Isr J Med Sci; 1972 Jun; 8(6):855-6. PubMed ID: 5051821
    [No Abstract]   [Full Text] [Related]  

  • 19. [Lipid-peroxidation in vivo].
    Thiele OW
    Hippokrates; 1977 Feb; 48(1):67-8. PubMed ID: 845044
    [No Abstract]   [Full Text] [Related]  

  • 20. Differential effects of acetate on palmitate and octanoate oxidation: segregation of acetyl CoA pools.
    Cederbaum AI; Rubin E
    Arch Biochem Biophys; 1975 Feb; 166(2):618-28. PubMed ID: 1119812
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.