BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 4662214)

  • 1. Metabolism of n-alkanein Endomycopsis lipolytica. I. Studies on the oxidation of n-alkanes and their derivatives.
    Singh HD; Barua PK; Pillai KR; Baruah JN; Iyengar MS
    Indian J Biochem Biophys; 1972 Dec; 9(4):315-20. PubMed ID: 4662214
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of n-alkane in Endomycopsis lipolytica. II. Formation of fatty acids from n-alkanes and their derivatives.
    Pillai KR; Bhagat SD; Vadalkar K; Singh HD; Baruah JN; Iyengar MS
    Indian J Biochem Biophys; 1972 Dec; 9(4):321-4. PubMed ID: 4662215
    [No Abstract]   [Full Text] [Related]  

  • 3. Metabolism of n-alkane in Endomycopsis lipolytica (Saccharomycopsis lipolytica): Part IV--Characteristics of lipid formation from n-alkanes by non-proliferating cells.
    Roy PK; Singh HD; Baruah JN
    Indian J Biochem Biophys; 1978 Dec; 15(6):456-61. PubMed ID: 753745
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism of n-alkane in Endomycopsis lipolytica (Saccharomycopsis lipolytica): Part III. Formation of carbohydrates from hydrocarbons.
    Roy PK; Singh HD; Baruah JN
    Indian J Biochem Biophys; 1974 Dec; 11(4):279-86. PubMed ID: 4478836
    [No Abstract]   [Full Text] [Related]  

  • 5. Requirement of iron in the induction process of the cyanide-insensitive respiration in Endomycopsis lipolytica.
    Henry MF; Bonner WD; Nyns EJ
    Arch Int Physiol Biochim; 1974 Dec; 82(5):990-1. PubMed ID: 4142735
    [No Abstract]   [Full Text] [Related]  

  • 6. Appearance of an electron paramagnetic resonance signal during the induction of the cyanide-insensitive respiration in the yeast Saccharomycopsis lipolytica [proceedings].
    Henry MF
    Arch Int Physiol Biochim; 1978 May; 86(2):431-2. PubMed ID: 81012
    [No Abstract]   [Full Text] [Related]  

  • 7. Mitochondrial reduction of Fe (III) chelates, an apparent cyanide-insensitive respiration [proceedings].
    Damanet-Ledrut MJ; Nyns EJ
    Arch Int Physiol Biochim; 1979 Oct; 87(4):785-7. PubMed ID: 93903
    [No Abstract]   [Full Text] [Related]  

  • 8. Proceedings: Inhibition by Cd2+ of the endogenous respiration of Endomycopsis lipolytica.
    de Troostembergh JC; Nyns EJ
    Arch Int Physiol Biochim; 1974 Oct; 82(4):784. PubMed ID: 4141455
    [No Abstract]   [Full Text] [Related]  

  • 9. Adaptative or constitutive nature of the enzymes involved in the oxidation of n-hexadecane into palmitic acid by Candida lipolytica.
    Nyns EJ; Auquière JP; Wiaux AL
    Z Allg Mikrobiol; 1969; 9(5):373-80. PubMed ID: 5382795
    [No Abstract]   [Full Text] [Related]  

  • 10. Biological properties of the cyanide-insensitive respiration of the yeast Saccharomycopsis lipolytica.
    Henry MF; Nyns EJ
    Arch Int Physiol Biochim; 1976 Apr; 84(2):393-4. PubMed ID: 71060
    [No Abstract]   [Full Text] [Related]  

  • 11. Application of the Kröger and Klingenberg model to the respiratory system of cyanide-insensitive mitochondria of Saccharomycopsis lipolytica [proceedings].
    De Troostembergh JC; Nyns EJ
    Arch Int Physiol Biochim; 1977 Apr; 85(2):404-6. PubMed ID: 71109
    [No Abstract]   [Full Text] [Related]  

  • 12. Growth characteristics of the strains of Saccharomycopsis lipolytica on hydrocarbons.
    Lonsane BK; Vadalkar K; Nigam JN; Singh HD; Baruah JN; Iyengar MS
    Indian J Exp Biol; 1973 Sep; 11(5):413-6. PubMed ID: 4793250
    [No Abstract]   [Full Text] [Related]  

  • 13. Induction by acetate of the cyanide-insensitive respiration in the yeast Saccharomycopsis lipolytica [proceedings].
    de Troostembergh JC; Nyns EJ
    Arch Int Physiol Biochim; 1977 Dec; 85(5):968-9. PubMed ID: 79386
    [No Abstract]   [Full Text] [Related]  

  • 14. Genetic analysis of mating type and alkane utilization in Saccharomycopsis lipolytica.
    Bassel J; Mortimer R
    J Bacteriol; 1973 May; 114(2):894-6. PubMed ID: 4706194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proceedings: Subcellular distribution of laurate omega-hydroxylase in Endomycopsis lipolytica grown on n-hexadecane.
    Delaissé JM; Martin P; Bouvy F; Nyns EJ
    Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1186. PubMed ID: 4461484
    [No Abstract]   [Full Text] [Related]  

  • 16. [Processes of hydroxylation and peroxide formation in microsomes].
    Belova VS; Borukaeva MR; Raikhman LM
    Biokhimiia; 1971; 36(3):456-61. PubMed ID: 4332105
    [No Abstract]   [Full Text] [Related]  

  • 17. Reduction of hydroxylamine by rat liver mitochondria.
    Bernheim ML; Hochstein P
    Arch Biochem Biophys; 1968 Mar; 124(1):436-42. PubMed ID: 4298499
    [No Abstract]   [Full Text] [Related]  

  • 18. Microbiological oxidation of long-chain aliphatic compounds. 3. 1-halogenoalkenes, 1-cyanohexadecane, and 1-alkoxyalkanes.
    Jones DF; Howe R
    J Chem Soc Perkin 1; 1968; 22():2816-21. PubMed ID: 5749355
    [No Abstract]   [Full Text] [Related]  

  • 19. [Effect of different factors on the relation between anabolic and catabolic processes in yeast cells].
    Kuriatov NS; Kharat'ian SG
    Mikrobiologiia; 1972; 41(4):592-7. PubMed ID: 5084509
    [No Abstract]   [Full Text] [Related]  

  • 20. [Fatty acid oxidation by yeasts of the genus Candida cultivated on n-alkanes].
    Karpenko MK; Kvasnikov EI; Ovchar IG; Povazhnaia TM
    Mikrobiol Zh; 1969; 31(4):291-7. PubMed ID: 5405225
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.