BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 4662215)

  • 1. Metabolism of n-alkane in Endomycopsis lipolytica. II. Formation of fatty acids from n-alkanes and their derivatives.
    Pillai KR; Bhagat SD; Vadalkar K; Singh HD; Baruah JN; Iyengar MS
    Indian J Biochem Biophys; 1972 Dec; 9(4):321-4. PubMed ID: 4662215
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of n-alkanein Endomycopsis lipolytica. I. Studies on the oxidation of n-alkanes and their derivatives.
    Singh HD; Barua PK; Pillai KR; Baruah JN; Iyengar MS
    Indian J Biochem Biophys; 1972 Dec; 9(4):315-20. PubMed ID: 4662214
    [No Abstract]   [Full Text] [Related]  

  • 3. Metabolism of n-alkane in Endomycopsis lipolytica (Saccharomycopsis lipolytica): Part IV--Characteristics of lipid formation from n-alkanes by non-proliferating cells.
    Roy PK; Singh HD; Baruah JN
    Indian J Biochem Biophys; 1978 Dec; 15(6):456-61. PubMed ID: 753745
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism of n-alkane in Endomycopsis lipolytica (Saccharomycopsis lipolytica): Part III. Formation of carbohydrates from hydrocarbons.
    Roy PK; Singh HD; Baruah JN
    Indian J Biochem Biophys; 1974 Dec; 11(4):279-86. PubMed ID: 4478836
    [No Abstract]   [Full Text] [Related]  

  • 5. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications.
    Fickers P; Benetti PH; Waché Y; Marty A; Mauersberger S; Smit MS; Nicaud JM
    FEMS Yeast Res; 2005 Apr; 5(6-7):527-43. PubMed ID: 15780653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica.
    Fukuda R
    Biosci Biotechnol Biochem; 2013; 77(6):1149-54. PubMed ID: 23748781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Formation of organic acids by the fungus Cladosporium resinae in media containing n-alkanes].
    Nette IT
    Prikl Biokhim Mikrobiol; 1975; 11(1):52-6. PubMed ID: 1168904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of mating type and alkane utilization in Saccharomycopsis lipolytica.
    Bassel J; Mortimer R
    J Bacteriol; 1973 May; 114(2):894-6. PubMed ID: 4706194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial conversions of n-alkanes to fatty acids: A new attempt to obtain economical microbial fats and fatty acids.
    Ratledge C
    Chem Ind; 1970 Jun; 26():843-54. PubMed ID: 5431590
    [No Abstract]   [Full Text] [Related]  

  • 10. Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica.
    Iwama R; Kobayashi S; Ishimaru C; Ohta A; Horiuchi H; Fukuda R
    Fungal Genet Biol; 2016 Jun; 91():43-54. PubMed ID: 27039152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of hydrocarbons and derivatives on the polar lipid fatty acids of an Acinetobacter isolate.
    Patrick MA; Dugan PR
    J Bacteriol; 1974 Jul; 119(1):76-81. PubMed ID: 4407014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1.
    Park MO
    J Bacteriol; 2005 Feb; 187(4):1426-9. PubMed ID: 15687207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial assimilation of hydrocarbons. I. Fatty acids derived from normal alkanes.
    Makula R; Finnerty WR
    J Bacteriol; 1968 Jun; 95(6):2102-7. PubMed ID: 5669891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The growth of yeasts on hydrocarbons.
    Shennan JL; Levi JD
    Prog Ind Microbiol; 1974; 13():1-57. PubMed ID: 4612611
    [No Abstract]   [Full Text] [Related]  

  • 15. Cultivation of Candida lipolytica 4-1 on hydrocarbons. IV. Fatty acids formed during batch cultivation on model gas oils.
    Volfová O; Pecka K
    Folia Microbiol (Praha); 1973; 18(4):286-99. PubMed ID: 4753341
    [No Abstract]   [Full Text] [Related]  

  • 16. [Formation of fatty acids by aspergillus ochraceus 15B growing on a hexadecane containing medium].
    Bilai VI; Redchits' TI; Bondarchuk AA
    Mikrobiol Zh; 1975; 37(2):166-8. PubMed ID: 1214637
    [No Abstract]   [Full Text] [Related]  

  • 17. [The assimilation of n-alkanes by a marine bacterium].
    Killinger A
    Arch Mikrobiol; 1970; 73(2):153-9. PubMed ID: 5487431
    [No Abstract]   [Full Text] [Related]  

  • 18. Cellular fatty acids derived from normal alkanes by Candida rugosa.
    Iida M; Kobayashi H; Iizuka H
    Z Allg Mikrobiol; 1980; 20(7):449-57. PubMed ID: 7434793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin of fatty acids in the hydrocarbon-utilizing microorganism Mycobacterium vaccae.
    King DH; Perry JJ
    Can J Microbiol; 1975 Jan; 21(1):85-9. PubMed ID: 1116040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Influence of fatty acids on the development of Candida tropicalis in the presence of alkanes].
    Duvnjak Z; Azoulay E
    Ann Inst Pasteur (Paris); 1972 May; 122(5):987-1007. PubMed ID: 5050885
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.