These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 466559)

  • 1. Inline blood gas analysis by gas chromatography in patients during and after coronary artery surgery.
    Moffitt EA; McLaren RG; Imrie DD; Allen CT; Kinley CE; Parrott JC
    Can Anaesth Soc J; 1979 May; 26(3):157-63. PubMed ID: 466559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous in-vivo blood-gas determination in man: reliability and safety of a new device.
    Richman KA; Jobes DR; Schwalb AJ
    Anesthesiology; 1980 Apr; 52(4):313-7. PubMed ID: 7362051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ventilation-perfusion inequality in patients undergoing cardiac surgery.
    Hachenberg T; Tenling A; Nyström SO; Tyden H; Hedenstierna G
    Anesthesiology; 1994 Mar; 80(3):509-19. PubMed ID: 8141447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multisite evaluation of a continuous intraarterial blood gas monitoring system.
    Larson CP; Vender J; Seiver A
    Anesthesiology; 1994 Sep; 81(3):543-52. PubMed ID: 8092498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary abnormalities after coronary arterial bypass grafting operation: cardiopulmonary bypass versus mechanical stabilization.
    Kochamba GS; Yun KL; Pfeffer TA; Sintek CF; Khonsari S
    Ann Thorac Surg; 2000 May; 69(5):1466-70. PubMed ID: 10881824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous intra-jugular venous blood-gas monitoring with the Paratrend 7 during hypothermic cardiopulmonary bypass.
    Endoh H; Honda T; Oohashi S; Nagata Y; Shibue C; Shimoji K
    Br J Anaesth; 2001 Aug; 87(2):223-8. PubMed ID: 11493493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcutaneous oxygen measurement during thoracic anaesthesia.
    Gøthgen I; Degn H; Jacobsen E; Rasmussen JP
    Acta Anaesthesiol Scand; 1980 Dec; 24(6):491-4. PubMed ID: 7246032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single electrochemical sensor for transcutaneous measurement of PO2 and PCO2.
    Parker D; Delpy DT; Reynolds EO
    Birth Defects Orig Artic Ser; 1979; 15(4):109-16. PubMed ID: 534689
    [No Abstract]   [Full Text] [Related]  

  • 9. Transcutaneous oxygen tension measurement II. The influence of halothane and hypotension.
    Gøthgen I; Jacobsen E
    Acta Anaesthesiol Scand Suppl; 1978; 67():71-5. PubMed ID: 278458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and utility of a continuous intra-arterial blood gas monitoring system in pediatric patients.
    Coule LW; Truemper EJ; Steinhart CM; Lutin WA
    Crit Care Med; 2001 Feb; 29(2):420-6. PubMed ID: 11246326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical evaluation of the on-line Sensicath blood gas monitoring system.
    Myklejord DJ; Pritzker MR; Nicoloff DM; Emery AM; Emery RW
    Heart Surg Forum; 1998; 1(1):60-4. PubMed ID: 11276442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cardiopulmonary bypass temperature on pulmonary gas exchange after coronary artery operations.
    Birdi I; Regragui IA; Izzat MB; Alonso C; Black AM; Bryan AJ; Angelini GD
    Ann Thorac Surg; 1996 Jan; 61(1):118-23. PubMed ID: 8561535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Techniques for measuring the partial pressures of gases in the blood. Part II- in vivo measurements.
    Hahn CE
    J Phys E; 1981 Jul; 14(7):783-97. PubMed ID: 6787191
    [No Abstract]   [Full Text] [Related]  

  • 14. Techniques for measuring the partial pressures of gases in the blood. Part I--in vitro measurements.
    Hahn CE
    J Phys E; 1980 May; 13(5):470-82. PubMed ID: 6768877
    [No Abstract]   [Full Text] [Related]  

  • 15. Evaluation of a new re-usable electrode for continuous monitoring of blood PO2 during open-heart surgery.
    Claremont DJ; Pagdin TM
    J Med Eng Technol; 1985; 9(4):174-9. PubMed ID: 4045985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous monitoring of blood PO2 in extracorporeal systems. An in vitro evaluation of a re-usable oxygen electrode.
    Claremont DJ; Pagdin TM; Walton N
    Anaesthesia; 1984 Apr; 39(4):362-9. PubMed ID: 6711787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the transcutaneous oxygen and carbon dioxide tension in different electrode locations during general anaesthesia.
    Nishiyama T; Nakamura S; Yamashita K
    Eur J Anaesthesiol; 2006 Dec; 23(12):1049-54. PubMed ID: 16824244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous comparison of in vitro and in vivo calibrated transcutaneous oxygen tension with arterial oxygen tension in infants.
    Pollitzer MJ; Reynolds EO; Morgan AK; Soutter LP; Parker D; Delpy DT; Whitehead MD
    Birth Defects Orig Artic Ser; 1979; 15(4):295-304. PubMed ID: 534709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moderate hyperoxic versus near-physiological oxygen targets during and after coronary artery bypass surgery: a randomised controlled trial.
    Smit B; Smulders YM; de Waard MC; Boer C; Vonk AB; Veerhoek D; Kamminga S; de Grooth HJ; García-Vallejo JJ; Musters RJ; Girbes AR; Oudemans-van Straaten HM; Spoelstra-de Man AM
    Crit Care; 2016 Mar; 20():55. PubMed ID: 26968380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved sensor and a method for transcutaneous CO2 monitoring.
    Beran AV; Shigezawa GY; Yeung HN; Huxtable RF
    Acta Anaesthesiol Scand Suppl; 1978; 68():111-7. PubMed ID: 279192
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.