These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 4665828)
1. On a liquid drop model of blood rheology. Kline KA Biorheology; 1972 Dec; 9(4):287-99. PubMed ID: 4665828 [No Abstract] [Full Text] [Related]
2. Rheogoniometric studies of whole human blood at shear rates down to 0.0009 sec-1. II. Mathematical interpretation. Huang CR; King RG; Copley AL Biorheology; 1973 Mar; 10(1):23-8. PubMed ID: 4724174 [No Abstract] [Full Text] [Related]
4. Contribution of erythrocytes to turbulent blood flow. Stein PD; Sabbah HN; Blick EF Biorheology; 1975 Aug; 12(5):293-9. PubMed ID: 1203532 [No Abstract] [Full Text] [Related]
5. Turbulent blood flow and the effects of erythrocytes. Munter WA; Stein PD Cardiovasc Res; 1974 May; 8(3):338-46. PubMed ID: 4416756 [No Abstract] [Full Text] [Related]
6. Engineering simulation of the viscous behavior of whole blood using suspensions of flexible particles. Tickner EG; Sacks AH Circ Res; 1969 Oct; 25(4):389-400. PubMed ID: 5347220 [No Abstract] [Full Text] [Related]
7. Capillary pore rheology of erythrocytes. V. The glass capillary array--effect of velocity and haematocrit in long bore tubes. Lingard PS Microvasc Res; 1979 May; 17(3 Pt 1):272-89. PubMed ID: 459940 [No Abstract] [Full Text] [Related]
8. Thin film blood flow in rectangular channels with application to artificial kidney haemodynamics. Gaylor JD J Biomech; 1973 May; 6(3):241-51. PubMed ID: 4706934 [No Abstract] [Full Text] [Related]
9. Some flow properties of erythrocytes and rouleaux. Goldsmith HL Bibl Anat; 1967; 9():259-65. PubMed ID: 6029874 [No Abstract] [Full Text] [Related]
10. Blood flow in capillary tubes: curvature and gravity effects. Hung TC; Hung TK; Bugliarello G Biorheology; 1980; 17(4):331-42. PubMed ID: 7260345 [No Abstract] [Full Text] [Related]
11. Rheological properties of human erythrocytes and their influence upon the "anomalous" viscosity of blood. Schmid-Schönbein H; Wells RE Ergeb Physiol; 1971; 63():146-219. PubMed ID: 5558776 [No Abstract] [Full Text] [Related]
12. Dissipative effects due to hydrodynamic interactions between red cells in a theory of pulse transmission and oscillatory flow in arteries. Kline KA; Allen SJ; Keshavarzi M Biorheology; 1972 Mar; 9(1):1-22. PubMed ID: 4647688 [No Abstract] [Full Text] [Related]
13. Surface phenomena in hemorheology: their theoretical, experimental and clinical aspects. Ann N Y Acad Sci; 1983; 416():1-761. PubMed ID: 6587803 [No Abstract] [Full Text] [Related]
14. Mathematical concepts of blood flow and blood rheology. Trowbridge EA Life Support Syst; 1984; 2(1):25-38. PubMed ID: 6471908 [No Abstract] [Full Text] [Related]
15. On micropolar fluid model for blood flow through narrow tubes. Chaturani P; Upadhya VS Biorheology; 1979; 16(6):419-28. PubMed ID: 534765 [No Abstract] [Full Text] [Related]
16. A two-fluid model for blood flow through small diameter tubes. Chaturani P; Upadhya VS Biorheology; 1979; 16(1-2):109-118. PubMed ID: 476292 [No Abstract] [Full Text] [Related]
17. A rheological model for studying the hematocrit dependence of red cell-red cell and red cell-protein interactions in blood. Quemada D Biorheology; 1981; 18(3-6):501-16. PubMed ID: 7326391 [No Abstract] [Full Text] [Related]
18. Pulsatile flow of a couple stress fluid through circular tubes with applications to blood flow. Chaturani P; Upadhya VS Biorheology; 1978; 15(3-4):193-201. PubMed ID: 737322 [No Abstract] [Full Text] [Related]
19. Large scale model studies of apparent viscosity and erythrocyte velocity in capillaries. Hochmuth RM; Sutera SP Bibl Anat; 1969; 10():113-23. PubMed ID: 5407354 [No Abstract] [Full Text] [Related]
20. Maxwell fluid behavior of blood at low shear rate. McMillan DE; Utterback N Biorheology; 1980; 17(4):343-54. PubMed ID: 7260346 [No Abstract] [Full Text] [Related] [Next] [New Search]