These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Flow of couple stress fluid through narrow tubes by sigma phenomenon and marginal zone theory with applications to blood flow and cardiovascular diseases. Chaturani P Biorheology; 1979; 16(6):377-86. PubMed ID: 534760 [No Abstract] [Full Text] [Related]
26. A two-fluid model for blood flow through small diameter tubes with non-zero couple stress boundary condition at interface. Chaturani P; Upadhya VS; Mahajan SP Biorheology; 1981; 18(2):245-53. PubMed ID: 7317586 [No Abstract] [Full Text] [Related]
27. A low Reynolds number entry flow theory and its application to the motion of the plasma in bolus flow. Lew HS; Miller J J Biomech; 1974 Mar; 7(2):113-21. PubMed ID: 4837545 [No Abstract] [Full Text] [Related]
28. An analysis of blood flow at low shear rates in a concentric cylinder viscometer. Bloor MI Biorheology; 1982; 19(6):681-94. PubMed ID: 7184517 [TBL] [Abstract][Full Text] [Related]
29. Quasi-thermodynamic interpretation of the behavior of formed elements in blood flow. Mahalingam R; Poon TK Biorheology; 1973 Sep; 10(3):329-41. PubMed ID: 4772007 [No Abstract] [Full Text] [Related]
30. The influence of erythrocyte shape and rigidity on the viscosity of blood. Whitmore RL Biorheology; 1981; 18(3-6):557-62. PubMed ID: 7326393 [No Abstract] [Full Text] [Related]
31. Thixotropy of blood and red blood cell suspensions. McMillan DE; Utterback NG; Baldridge JB Biorheology; 1980; 17(5-6):445-54. PubMed ID: 7306695 [No Abstract] [Full Text] [Related]
32. Capillary pore rheology of erythrocytes. III. On the interpretation of human erythrocyte behaviour in narrow capillary pores. Lingard PS Microvasc Res; 1977 Jan; 13(1):29-58. PubMed ID: 859451 [No Abstract] [Full Text] [Related]
33. Filtration measurements to determine the effects of red cell rigidity and aggregation on resistance to flow. Sacks AH; Bradley M; North P Microvasc Res; 1981 Nov; 22(3):331-44. PubMed ID: 7329337 [No Abstract] [Full Text] [Related]
34. [Macro- and micro-rheology of blood circulation]. Niimi H Iyodenshi To Seitai Kogaku; 1983 Aug; 21(4):225-32. PubMed ID: 6366292 [No Abstract] [Full Text] [Related]
35. Simulation studies of blood flow through stenoses in the microcirculation. Tickner EG; Sacks AH Microvasc Res; 1971 Jul; 3(3):337-42. PubMed ID: 5111907 [No Abstract] [Full Text] [Related]
36. A measuring device to determine a universal parameter for the flow characteristics of blood: measurement of the yield shear stress in a branched capillary. Radtke H; Schneider R; Witt R; Kiesewetter H; Schmid-Schönbein H Adv Exp Med Biol; 1984; 169():851-7. PubMed ID: 6731131 [No Abstract] [Full Text] [Related]
37. A model of steady blood flow. Ware JH; Sorrell FY; Felder RM Biorheology; 1974 Mar; 11(2):97-109. PubMed ID: 4441642 [No Abstract] [Full Text] [Related]
39. Theory of non-Newtonian viscosity of blood at low shear rate--effect of rouleaux. Murata T Biorheology; 1976 Nov; 13(5):287-96. PubMed ID: 1000079 [No Abstract] [Full Text] [Related]