These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 4665900)
1. Shear flow over a protrusion from a plane wall: addendum. Hyman WA J Biomech; 1972 Nov; 5(6):643. PubMed ID: 4665900 [No Abstract] [Full Text] [Related]
2. Shear flow over a protrusion from a plane wall. Hyman WA J Biomech; 1972 Jan; 5(1):45-8. PubMed ID: 4666094 [No Abstract] [Full Text] [Related]
3. Numerical calculations of oscillating flow in the vicinity of square wall obstacles in plane conduits. Cheng LC; Clark ME; Robertson JM J Biomech; 1972 Sep; 5(5):467-84. PubMed ID: 4667272 [No Abstract] [Full Text] [Related]
4. Numerical calculations of plane oscillatory non-uniform flow. II. Parametric study of pressure gradient and frequency with square wall obstacles. Cheng LC; Robertson JM; Clark ME J Biomech; 1973 Sep; 6(5):521-38. PubMed ID: 4748500 [No Abstract] [Full Text] [Related]
6. Blood flow, slip, and viscometry. Nubar Y Biophys J; 1971 Mar; 11(3):252-64. PubMed ID: 5573368 [TBL] [Abstract][Full Text] [Related]
7. A new computerized biomechanical perfusion model for ex vivo study of fluid mechanical forces in intact conduit vessels. Gan L; Sjögren LS; Doroudi R; Jern S J Vasc Res; 1999; 36(1):68-78. PubMed ID: 10050075 [TBL] [Abstract][Full Text] [Related]
8. Left ventricular wall stress calculated from one-plane cineangiography. Falsetti HL; Mates RE; Grant C; Greene DG; Bunnell IL Circ Res; 1970 Jan; 26(1):71-83. PubMed ID: 5410094 [No Abstract] [Full Text] [Related]
9. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. Keynton RS; Evancho MM; Sims RL; Rodway NV; Gobin A; Rittgers SE J Biomech Eng; 2001 Oct; 123(5):464-73. PubMed ID: 11601732 [TBL] [Abstract][Full Text] [Related]
10. On the influence of wall properties and Poiseuille flow in peristalsis. Mittra TK; Prasad SN J Biomech; 1973 Nov; 6(6):681-93. PubMed ID: 4757486 [No Abstract] [Full Text] [Related]
11. Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow. Ye H; Shen Z; Li Y Soft Matter; 2018 Sep; 14(36):7401-7419. PubMed ID: 30187053 [TBL] [Abstract][Full Text] [Related]
12. Cyclic loading on the red cell membrane in a shear flow: a possible cause of hemolysis. Niimi H; Sugihara M J Biomech Eng; 1985 May; 107(2):91-5. PubMed ID: 3999717 [TBL] [Abstract][Full Text] [Related]
13. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. LeGrice IJ; Takayama Y; Covell JW Circ Res; 1995 Jul; 77(1):182-93. PubMed ID: 7788876 [TBL] [Abstract][Full Text] [Related]
15. Hemodynamics and wall shear rate in the abdominal aorta of dogs. Effects of vasoactive agents. White KC; Kavanaugh JF; Wang DM; Tarbell JM Circ Res; 1994 Oct; 75(4):637-49. PubMed ID: 7923610 [TBL] [Abstract][Full Text] [Related]
16. The role of wall shear stress in microvascular network adaptation. Hudetz AG; Kiani MF Adv Exp Med Biol; 1992; 316():31-9. PubMed ID: 1288092 [TBL] [Abstract][Full Text] [Related]
17. Oxygen diffusion in blood: a translational model of shear-induced augmentation. Diller TE; Mikic BB J Biomech Eng; 1983 Nov; 105(4):346-52. PubMed ID: 6645443 [TBL] [Abstract][Full Text] [Related]
18. The frequency response of electrochemical wall shear probes in pulsatile flow. Talbot L; Steinert JJ J Biomech Eng; 1987 Feb; 109(1):60-4. PubMed ID: 3560881 [TBL] [Abstract][Full Text] [Related]
19. Measurement of wall motion and wall shear in a compliant arterial cast. Deters OJ; Bargeron CB; Mark FF; Friedman MH J Biomech Eng; 1986 Nov; 108(4):355-8. PubMed ID: 3795882 [TBL] [Abstract][Full Text] [Related]
20. The effect of pulsatile frequency on wall shear in a compliant cast of a human aortic bifurcation. Kuban BD; Friedman MH J Biomech Eng; 1995 May; 117(2):219-23. PubMed ID: 7666659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]