These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 4665934)

  • 1. Catecholamine localization, content, and metabolism in the gill of two lamellibranch molluscs.
    Paparo A; Finch CE
    Comp Gen Pharmacol; 1972 Sep; 3(11):303-9. PubMed ID: 4665934
    [No Abstract]   [Full Text] [Related]  

  • 2. Extraneuronal binding of catecholamines and 3,4-dihydroxyphenylalanine (dopa) in salivary glands.
    Hamberger B; Norberg KA; Olson L
    Acta Physiol Scand; 1967; 69(1):1-12. PubMed ID: 5340156
    [No Abstract]   [Full Text] [Related]  

  • 3. Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. A histochemical study.
    Hamberger B
    Acta Physiol Scand Suppl; 1967; 295():1-56. PubMed ID: 6057304
    [No Abstract]   [Full Text] [Related]  

  • 4. Uptake of exogenous catecholamines by monoamine-containing neurons of the central nervous system: uptake of catecholamines by arcuato-infundibular neurons.
    Lichtensteiger W; Langemann H
    J Pharmacol Exp Ther; 1966 Mar; 151(3):400-8. PubMed ID: 5938477
    [No Abstract]   [Full Text] [Related]  

  • 5. Synthesis of noradrenaline from 3,4-dihydroxyphenylalanine (DOPA) and dopamine in adrenergic nerves of mouse atrium--effect of reserpine, monoamine oxidase and tyrosine hydroxylase inhibition.
    Jonsson G; Sachs C
    Acta Physiol Scand; 1970 Nov; 80(3):307-22. PubMed ID: 5486459
    [No Abstract]   [Full Text] [Related]  

  • 6. [The action of 2-amino-4-(isothioureyl methyl)-thiazol dihydrochloride (Agr 307) on the catecholamines of the central nervous system in the rat. Possible inhibition of dopamine beta-hydroxylase].
    Brunaud M; Vallée E; Laborit H
    Agressologie; 1971; 12(2):113-8. PubMed ID: 5123844
    [No Abstract]   [Full Text] [Related]  

  • 7. Histochemical studies of the relationship of chromaffin cells and adrenergic nerve fibers to the cardiac ganglia of several species.
    Jacobowitz D
    J Pharmacol Exp Ther; 1967 Nov; 158(2):227-40. PubMed ID: 4169042
    [No Abstract]   [Full Text] [Related]  

  • 8. Uptake of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan by catecholamine forming mast cells in the hamster.
    Adams-Ray J; Dahlström A; Sachs C
    Acta Physiol Scand; 1966; 67(3):295-9. PubMed ID: 5298075
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of reserpine and prenylamine on the L-dopa turnover in the rat exocrine pancreas.
    Alm P; Ehinger B; Falck B; Nordgren L
    Eur J Pharmacol; 1971 Oct; 16(2):192-200. PubMed ID: 5161258
    [No Abstract]   [Full Text] [Related]  

  • 10. The glyoxylic acid fluorescence histochemical method: a detailed account of the methodology for the visualization of central catecholamine neurons.
    Lindvall O; Björklund A
    Histochemistry; 1974 Apr; 39(2):97-127. PubMed ID: 4847179
    [No Abstract]   [Full Text] [Related]  

  • 11. On the presence of extraneuronal catecholamine in the iris of the rat: a scanning microfluorimetric study.
    Schipper J; Tilders FJ
    Neurosci Lett; 1979 May; 12(2-3):229-34. PubMed ID: 460717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of amine uptake in tubero-infundibular dopamine neurones and in catecholamine cell bodies of the area postrema.
    Fuxe K; Hamberger B; Malmfores T
    J Pharm Pharmacol; 1966 Aug; 18(8):543-4. PubMed ID: 4381861
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of dopamine-beta-hydroxylase inhibitors 1,1-dimethyl-3-phenyl-2-thiourea, fusaric acid and dimethyldithiocarbamate, on the rat brain monoamine content following intraventricular injection of L-dopa.
    Vetulani J; Reichenberg K
    Biochem Pharmacol; 1973 Jun; 22(11):1263-8. PubMed ID: 4727781
    [No Abstract]   [Full Text] [Related]  

  • 14. The monoamine oxidases of brain: selective inhibition with drugs and the consequences for the metabolism of the biogenic amines.
    Yang HY; Neff NH
    J Pharmacol Exp Ther; 1974 Jun; 189(3):733-40. PubMed ID: 4843170
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of catecholamine precursors and monoamine oxidase inhibition on the amine levels of central catecholamine neurons after reserpine treatment or tyrosine hydroxylase inhibition.
    Corrodi H; Fuxe K
    Life Sci; 1967 Jul; 6(13):1345-50. PubMed ID: 6035763
    [No Abstract]   [Full Text] [Related]  

  • 16. The occurrence of monoamines in Planorbis corneus: a fluorescence microscopic and microspectrometric study.
    Marsden C; Kerkut GA
    Comp Gen Pharmacol; 1970 Mar; 1(1):101-16. PubMed ID: 5527538
    [No Abstract]   [Full Text] [Related]  

  • 17. Drug-induced changes in monoamine levels in the sympathetic adrenergic ganglion cells and terminals. A histochemical study.
    Norberg KA
    Acta Physiol Scand; 1965 Nov; 65(3):221-34. PubMed ID: 4379526
    [No Abstract]   [Full Text] [Related]  

  • 18. Involvement of biogenic amines in memory formation.
    Dismukes RK; Rake AV
    Psychopharmacologia; 1972; 23(1):17-25. PubMed ID: 4259732
    [No Abstract]   [Full Text] [Related]  

  • 19. IDENTIFICATION AND CELLULAR LOCALIZATION OF THE CATECHOLAMINES IN THE RETINA AND THE CHOROID OF THE RABBIT.
    HAEGGENDAL J; MALMFORS T
    Acta Physiol Scand; 1965; 64():58-66. PubMed ID: 14348505
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of hypoxia on monoamine synthesis, levels and metabolism in rat brain.
    Davis JN; Carlsson A
    J Neurochem; 1973 Oct; 21(4):783-90. PubMed ID: 4148239
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.