BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 4666114)

  • 1. Bioenergetic properties of mitochondria from flight muscle of aging blowflies.
    Bulos B; Shukla S; Sacktor B
    Arch Biochem Biophys; 1972 Apr; 149(2):461-9. PubMed ID: 4666114
    [No Abstract]   [Full Text] [Related]  

  • 2. Substrates of oxidative metabolism in dipteran flight muscle.
    Bursell E
    Comp Biochem Physiol B; 1975 Oct; 52(2):235-8. PubMed ID: 170034
    [No Abstract]   [Full Text] [Related]  

  • 3. Disuse atrophy of skeletal muscle: loss of functional activity of mitochondria.
    Max SR
    Biochem Biophys Res Commun; 1972 Feb; 46(3):1394-8. PubMed ID: 5012174
    [No Abstract]   [Full Text] [Related]  

  • 4. Fuscin, an inhibitor of respiration and oxidative phosphorylation in ox-neck muscle mitochondria.
    Cheah KS
    Biochim Biophys Acta; 1972 Jul; 275(1):1-9. PubMed ID: 5049017
    [No Abstract]   [Full Text] [Related]  

  • 5. Control of mitochondrial respiration by the phosphate potential.
    Wilson DF; Owen C; Mela L; Weiner L
    Biochem Biophys Res Commun; 1973 Jul; 53(1):326-33. PubMed ID: 4741551
    [No Abstract]   [Full Text] [Related]  

  • 6. Bioenergetics of mitochondria from flight muscles of aging blowflies: partial reactions of oxidation and phosphorylation.
    Bulos BA; Shukla SP; Sacktor B
    Arch Biochem Biophys; 1975 Feb; 166(2):639-44. PubMed ID: 164153
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of pH and halothane on muscle and liver mitochondria.
    Mitchelson KR; Hird FJ
    Am J Physiol; 1973 Dec; 225(6):1393-8. PubMed ID: 4760451
    [No Abstract]   [Full Text] [Related]  

  • 8. The magnesium-dependent incorporation of serine into the phospholipids of mitochondria isolated from the developing flight muscle of the african locust Locusta migratoria.
    Bygrave FL; Kaiser W
    Eur J Biochem; 1969 Mar; 8(1):16-22. PubMed ID: 5781267
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of tannic acid on the phosphorylation and ATPase activity of mitochondria from blowfly flight muscle.
    Duncan CJ; Bowler K; Davison TF
    Biochem Pharmacol; 1970 Aug; 19(8):2453-60. PubMed ID: 4255606
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of phospholipases on the structure and function of mitochondria.
    Burstein C; Loyter A; Racker E
    J Biol Chem; 1971 Jun; 246(12):4075-82. PubMed ID: 4104710
    [No Abstract]   [Full Text] [Related]  

  • 11. A magnesium-responsive defect of respiration and oxidative phosphorylation in skeletal muscle mitochondria of dystrophic hamsters.
    Wrogemann K; Blanchaer MC; Jacobson BE
    Can J Biochem; 1970 Dec; 48(12):1332-8. PubMed ID: 5510943
    [No Abstract]   [Full Text] [Related]  

  • 12. Bovine serum albumin effect on endotoxin-challenged mitochondria.
    Schumer W; Erve PR
    Surgery; 1971 May; 69(5):699-701. PubMed ID: 4930255
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of the effects of menadione and 2,3-dimethylnaphthoquinone on the energy-coupling reactions of beef-heart mitochondria. Evidence for the involvement of a thiol group in the reactions of oxidative phosphorylation.
    Young JM
    Biochem Pharmacol; 1971 Jan; 20(1):163-71. PubMed ID: 4398313
    [No Abstract]   [Full Text] [Related]  

  • 14. 2,4-Dinitrophenol causes a marked increase in the apparent Km of Pi and of ADP for oxidative phosphorylation.
    Kayalar C; Rosing J; Boyer PD
    Biochem Biophys Res Commun; 1976 Oct; 72(3):1153-9. PubMed ID: 985515
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies of steroid myopathy. Examination of the possible effect of triamcinolone on mitochondria and sarcotubular vesicles of rat skeletal muscle.
    Peter JB; Verhaag DA; Worsfold M
    Biochem Pharmacol; 1970 May; 19(5):1627-36. PubMed ID: 4254782
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of streptozotocin-induced diabetes on oxidative phosphorylation and related reactions in skeletal muscle mitochondria.
    Gross MD; Harris S; Beyer RE
    Horm Metab Res; 1972 Jan; 4(1):1-7. PubMed ID: 4258780
    [No Abstract]   [Full Text] [Related]  

  • 17. Ethidium bromide as an uncoupler of oxidative phosphorylation.
    Miko M; Chance B
    FEBS Lett; 1975 Jul; 54(3):347-52. PubMed ID: 124267
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of mitochondrial energy-linked functions by arsenate. Evidence for a nonhydrolytic mode of inhibitor action.
    Mitchell RA; Chang BF; Huang CH; DeMaster EG
    Biochemistry; 1971 May; 10(11):2049-54. PubMed ID: 4327397
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies on mitochondria. I. Mitochondrial DNA in relation to morphological development of sarcosomes in thoracic muscles of the african desert locust (Schistocerca gregaria Forsk).
    Tanguay R; Chaudhary KD
    Can J Biochem; 1971 Mar; 49(3):357-67. PubMed ID: 5549738
    [No Abstract]   [Full Text] [Related]  

  • 20. Ultrastuctural studies of beef heart mitochondria. I. Effects of adenosine diphosphate on mitochondrial morphology.
    Weber NE; Blair PV
    Biochem Biophys Res Commun; 1969 Sep; 36(6):987-93. PubMed ID: 5344728
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.