These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 4666114)

  • 41. On the mechanism of a calcium-associated defect of oxidative phosphorylation in progessive muscular dystrophy.
    Wrogemann K; Jacobson BE; Blanchaer MC
    Arch Biochem Biophys; 1973 Nov; 159(1):267-78. PubMed ID: 4361547
    [No Abstract]   [Full Text] [Related]  

  • 42. Menadiol as an electron donor for reversed oxidative phosphorylation in submitochondrial particles.
    Taggart WV; Sanadi DR
    Biochim Biophys Acta; 1972 Jun; 267(3):439-43. PubMed ID: 4340058
    [No Abstract]   [Full Text] [Related]  

  • 43. NAD + -induced phosphate acceptor specificity in submitochondrial systems.
    Vallin I; Lundberg P
    Biochim Biophys Acta; 1972 Feb; 256(2):191-8. PubMed ID: 4335834
    [No Abstract]   [Full Text] [Related]  

  • 44. Effects of propranolol on heart muscle mitochondria.
    Sakurada A; Voss DO; Brandão D; Campello AP
    Biochem Pharmacol; 1972 Feb; 21(4):535-40. PubMed ID: 4335406
    [No Abstract]   [Full Text] [Related]  

  • 45. Action of uncouplers and antibiotics in oxidative phosphorylation: prospectives for pi-interaction.
    Guillory RJ
    Ann N Y Acad Sci; 1969 Jan; 153(3):815-26. PubMed ID: 4242106
    [No Abstract]   [Full Text] [Related]  

  • 46. Effects of in vivo and in vitro administered thyroxine on substrate metabolism of isolated rabbit ventricle mitochondria. II. Characteristics of oxidative phosphorylation in mitochondria of euthyroid, hyperthyroid and thyrotoxic rabbits.
    Kimata SI; Tarjan EM
    Endocrinology; 1971 Aug; 89(2):378-84. PubMed ID: 4997572
    [No Abstract]   [Full Text] [Related]  

  • 47. Interaction of oligomycin with the pathway of mitochondrial energy transfer.
    Ramakrishna CK; Sanadi DR
    Arch Biochem Biophys; 1976 Sep; 176(1):218-24. PubMed ID: 970957
    [No Abstract]   [Full Text] [Related]  

  • 48. Structural requirements in the uncoupling of oxidative phosphorylation by N,N'-bis(dichloroacetyl) diamines.
    Merola AJ; Hwang KM; Jurkowitz M; Brierley GP
    Biochem Pharmacol; 1971 Jul; 20(7):1393-403. PubMed ID: 5163079
    [No Abstract]   [Full Text] [Related]  

  • 49. The effects of palmitic acid on skeletal muscle mitochondria of cold and warm acclimated rats.
    Ballantyne JS; George JC
    Arch Int Physiol Biochim; 1977 Apr; 85(2):281-6. PubMed ID: 71086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phosphate acceptor specificity during oxidative phosphorylation in submitochondrial particles.
    Vallin I; Lundberg P
    Biochim Biophys Acta; 1972 Feb; 256(2):179-90. PubMed ID: 4335833
    [No Abstract]   [Full Text] [Related]  

  • 51. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG
    Biochem J; 1975 Mar; 146(3):537-47. PubMed ID: 167720
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Post-mortem changes in structure and function of ox muscle mitochondria. 1. Electron microscopic and polarographic investigations.
    Cheah KS; Cheah AM
    J Bioenerg; 1971 May; 2(2):85-92. PubMed ID: 5135876
    [No Abstract]   [Full Text] [Related]  

  • 53. Isolation and some properties of mitochondria from the abdomen muscle of the crayfish Orconectes limosus.
    Skorkowski EF; Aleksandrowicz Z; Wrzolkowa T; Swierczyński J
    Comp Biochem Physiol B; 1976; 55(4):493-500. PubMed ID: 187373
    [No Abstract]   [Full Text] [Related]  

  • 54. Differing populations of mitochondria isolated from the skeletal muscle of normal and dystrophic hamsters.
    Mezon BJ; Wrogemann K; Blanchaer MC
    Can J Biochem; 1974 Nov; 52(11):1024-32. PubMed ID: 4429865
    [No Abstract]   [Full Text] [Related]  

  • 55. Uptake, retention, and efflux of Ca2+ by mitochondrial preparations from skeletal muscle.
    Allshire AP; Heffron JJ
    Arch Biochem Biophys; 1984 Jan; 228(1):353-63. PubMed ID: 6421235
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Age-related changes in the flight muscle mitochondria from the blowfly Sarcophaga bullata.
    Wohlrab H
    J Gerontol; 1976 May; 31(3):257-63. PubMed ID: 178708
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the nature of malonate-insensitive oxidation of pyruvate and glutamate by heart sarcosomes.
    Davis EJ
    Biochim Biophys Acta; 1968 Jul; 162(1):1-10. PubMed ID: 5665258
    [No Abstract]   [Full Text] [Related]  

  • 58. Protection of oxidative phosphorylation by bencyclane against the damaging effect of mitochondrial swelling.
    Vághy PL; Bor P; Szekeres L
    Biochem Pharmacol; 1980 May; 29(10):1385-9. PubMed ID: 7396974
    [No Abstract]   [Full Text] [Related]  

  • 59. Arsenate and phosphate as modifiers of adenosine triphosphate driven energy-linked reduction. Kinetic study of the effects of modifiers on inhibition by adenosine diphosphate.
    Huang CH; Mitchell RA
    Biochemistry; 1972 Jun; 11(12):2278-83. PubMed ID: 4337612
    [No Abstract]   [Full Text] [Related]  

  • 60. Malate transport into heart mitochondria.
    Digerness SB; Reddy WJ
    J Mol Cell Cardiol; 1975 Sep; 7(9):677-84. PubMed ID: 241862
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.