These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4667274)

  • 1. Uniaxial loading of the red-cell membrane.
    Hochmuth RM; Mohandas N
    J Biomech; 1972 Sep; 5(5):501-9. PubMed ID: 4667274
    [No Abstract]   [Full Text] [Related]  

  • 2. Stability of the thin elastic shell model of the red blood cell.
    Danielson DA
    J Biomech; 1971 Dec; 4(6):611-7. PubMed ID: 5162582
    [No Abstract]   [Full Text] [Related]  

  • 3. Modeling erythrocyte electrodeformation in response to amplitude modulated electric waveforms.
    Qiang Y; Liu J; Yang F; Dieujuste D; Du E
    Sci Rep; 2018 Jul; 8(1):10224. PubMed ID: 29976935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of a model membrane in relation to the viscoelastic properties of the red cell membrane.
    Rand RP
    J Gen Physiol; 1968 Jul; 52(1):173Suppl-86s. PubMed ID: 5742830
    [No Abstract]   [Full Text] [Related]  

  • 5. Membrane viscoelasticity.
    Evans EA; Hochmuth RM
    Biophys J; 1976 Jan; 16(1):1-11. PubMed ID: 1244886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelasticity of the human erythrocyte membrane.
    Williams AR
    Biorheology; 1973 Sep; 10(3):313-9. PubMed ID: 4772004
    [No Abstract]   [Full Text] [Related]  

  • 7. Membrane viscoplastic flow.
    Evans EA; Hochmuth RM
    Biophys J; 1976 Jan; 16(1):13-26. PubMed ID: 1244887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimates of membrane strain in shear hemolysis of osmotically inflated near spherical red cells.
    Kline KA; Schmid-Schöbein H
    Biorheology; 1974 Sep; 11(5):361-74. PubMed ID: 4461104
    [No Abstract]   [Full Text] [Related]  

  • 9. Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique.
    Hochmuth RM; Mohandas N; Blackshear PL
    Biophys J; 1973 Aug; 13(8):747-62. PubMed ID: 4726877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of red blood cell motion through cylindrical micropores: effects of cell properties.
    Secomb TW; Hsu R
    Biophys J; 1996 Aug; 71(2):1095-101. PubMed ID: 8842246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous manipulation and detection of living cell membrane dynamics.
    Gögler M; Betz T; Käs JA
    Opt Lett; 2007 Jul; 32(13):1893-5. PubMed ID: 17603605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus.
    Chang HY; Li X; Karniadakis GE
    Biophys J; 2017 Jul; 113(2):481-490. PubMed ID: 28746858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape memory of human red blood cells.
    Fischer TM
    Biophys J; 2004 May; 86(5):3304-13. PubMed ID: 15111443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the mechanical behavior of red blood cells.
    Skalak R
    Biorheology; 1973 Jun; 10(2):229-38. PubMed ID: 4728636
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanical properties of the erythrocyte as determinants of red cell birth and death.
    Weed RI
    Clin Sci; 1972 Feb; 42(2):8P. PubMed ID: 5058578
    [No Abstract]   [Full Text] [Related]  

  • 16. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition.
    Skotheim JM; Secomb TW
    Phys Rev Lett; 2007 Feb; 98(7):078301. PubMed ID: 17359066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of temperature on rheology of human erythrocytes.
    Sung KL; Chien S
    Chin J Physiol; 1992; 35(2):81-94. PubMed ID: 1451575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring the mechanical properties of individual human blood cells.
    Hochmuth RM
    J Biomech Eng; 1993 Nov; 115(4B):515-9. PubMed ID: 8302034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic transient of confined red blood cells.
    Prado G; Farutin A; Misbah C; Bureau L
    Biophys J; 2015 May; 108(9):2126-36. PubMed ID: 25954871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic properties of the human red blood cell membrane. I. Deformation, volume loss, and rupture of red cells in micropipettes.
    Jay AW
    Biophys J; 1973 Nov; 13(11):1166-82. PubMed ID: 4754197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.