These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4668572)

  • 1. Systems approach to the study of drug transport across membranes using suspension cultures of mammalian cells. I. Theoretical diffusion models.
    Ho NF; Turi J; Shipman C; Higuchi WI
    J Theor Biol; 1972 Mar; 34(3):451-67. PubMed ID: 4668572
    [No Abstract]   [Full Text] [Related]  

  • 2. Systems approach to study of solute transport across membranes using suspension cultures of mammalian cells. II. Experimental procedures and uptake studies with cholesterol.
    Turi JS; Higuchi WI; Shipman C; Ho NF
    J Pharm Sci; 1972 Oct; 61(10):1618-24. PubMed ID: 4672390
    [No Abstract]   [Full Text] [Related]  

  • 3. Systems approach to study of solute transport across membranes using suspension cultures of mammalian cells III: steady-state diffusion models.
    Turi JS; Ho NF; Higuchi WI; Shipman C
    J Pharm Sci; 1975 Apr; 64(4):622-6. PubMed ID: 1142072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systems approach to study of solute transport across membranes using suspension cultures of mammalian cells V: Uptake and release kinetics of cardiac glycosides by Burkitt lymphoma cells.
    Turi JS; Ho NF; Higuchi WI; Shipman C
    J Pharm Sci; 1975 Apr; 64(4):631-9. PubMed ID: 1142073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems approach to study of solute transport across membranes using suspension cultures of mammalian cells IV: Uptake and release kinetics of sterols.
    Turi JS; Higuchi WI; Ho NF; Shipman C
    J Pharm Sci; 1975 Apr; 64(4):627-31. PubMed ID: 1170314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems approach to the study of drug transport across membranes using suspension culture of mammalian cells. V. Simultaneous poassive transport and biosynthesis.
    Ando HY; Ho NF; Higuchi WI; Turi J; Shipman C
    J Theor Biol; 1976 Oct; 62(1):211-25. PubMed ID: 994520
    [No Abstract]   [Full Text] [Related]  

  • 7. Chemical oscillations in membrane.
    Caplan SR; Naparstek A; Zabusky NJ
    Nature; 1973 Oct; 245(5425):364-6. PubMed ID: 4593494
    [No Abstract]   [Full Text] [Related]  

  • 8. Mass transport phenomena and models: theoretical concepts.
    Flynn GL; Yalkowsky SH; Roseman TJ
    J Pharm Sci; 1974 Apr; 63(4):479-510. PubMed ID: 4828694
    [No Abstract]   [Full Text] [Related]  

  • 9. Theoretical model studies of intestinal drug absorption. IV. Bile acid transport at premicellar concentrations across diffusion layer-membrane barrier.
    Ho NF; Higuchi WI
    J Pharm Sci; 1974 May; 63(5):686-90. PubMed ID: 4829987
    [No Abstract]   [Full Text] [Related]  

  • 10. Theoretical model studies of drug absorption and transport in the GI tract. 3.
    Ho NF; Higuchi WI; Turi J
    J Pharm Sci; 1972 Feb; 61(2):192-7. PubMed ID: 5059781
    [No Abstract]   [Full Text] [Related]  

  • 11. Transfer of inorganic phosphate across human erythrocyte membranes.
    Schrier SL
    J Lab Clin Med; 1970 Mar; 75(3):422-34. PubMed ID: 4313673
    [No Abstract]   [Full Text] [Related]  

  • 12. The movement of monocarboxylic acids across phospholipid membranes: evidence for an exchange diffusion between pyruvate and other monocarboxylate ions.
    Bakker EP; van Dam K
    Biochim Biophys Acta; 1974 Mar; 339(2):285-9. PubMed ID: 4827853
    [No Abstract]   [Full Text] [Related]  

  • 13. Drug permeation through thin model membranes. II. Permeation characteristics of a polymeric model biomembrane.
    Herzog KA; Swarbrick J
    J Pharm Sci; 1971 Mar; 60(3):393-5. PubMed ID: 5572116
    [No Abstract]   [Full Text] [Related]  

  • 14. An in vitro collodion-lipid membrane model for drug absorption studies.
    Brandys J; Kwiek J; Witek J
    Pol J Pharmacol Pharm; 1974; 26(5):519-26. PubMed ID: 4427813
    [No Abstract]   [Full Text] [Related]  

  • 15. Passage of proteins through membranes--old assumptions and new perspectives.
    Rothman SS
    Am J Physiol; 1980 May; 238(5):G391-402. PubMed ID: 6155081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vectorial product concentration obtained with a permeable immobilized enzyme membrane. A new approach to the analysis of biological transport systems.
    Maïsterrena B; Blum LJ; Bardeletti G; Coulet PR
    Biochem J; 1986 May; 235(3):693-8. PubMed ID: 3753438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH oscillations in transport process.
    Chay TR
    J Theor Biol; 1979 Sep; 80(1):83-99. PubMed ID: 44536
    [No Abstract]   [Full Text] [Related]  

  • 18. Chloride transport by self-exchange and by KCl salt diffusion in gramicidin-treated red blood cells.
    Cass A; Dalmark M
    Acta Physiol Scand; 1979 Nov; 107(3):193-203. PubMed ID: 94237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical model of the pinocytotic vesicular transport process in endothelial cells.
    Rubin BT
    J Theor Biol; 1977 Feb; 64(4):619-47. PubMed ID: 846209
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetic constants determined from membrane transport measurements: carbonic anhydrase activity at high concentrations.
    Donaldson TL; Quinn JA
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4995-9. PubMed ID: 4216027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.