These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 4669911)

  • 1. Cochlear potentials. A status report.
    Dallos P
    Audiology; 1972; 11(1):29-41. PubMed ID: 4669911
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural and physiological features of the organ of Corti.
    Engström B; Engström H
    Audiology; 1972; 11(1):6-28. PubMed ID: 4206205
    [No Abstract]   [Full Text] [Related]  

  • 3. The mechanism of excitation of the hair cells in the cochlea.
    Honrubia V; Strelioff D; Ward PH
    Laryngoscope; 1971 Oct; 81(10):1719-25. PubMed ID: 5114167
    [No Abstract]   [Full Text] [Related]  

  • 4. Dynamic range of the cochlear transducer.
    Lawrence M
    Cold Spring Harb Symp Quant Biol; 1965; 30():159-67. PubMed ID: 5219468
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies of the distribution of cochlear potentials along the basilar membrane.
    Kohllöffel LU
    Acta Otolaryngol Suppl; 1971; 288():1-66. PubMed ID: 4341369
    [No Abstract]   [Full Text] [Related]  

  • 6. Dual origin of the cochlear microphonics: inner and outer hair cells.
    Karlan MS; Tonndorf J; Khanna SM
    Ann Otol Rhinol Laryngol; 1972 Oct; 81(5):696-704. PubMed ID: 4651113
    [No Abstract]   [Full Text] [Related]  

  • 7. [Examination of the sensitivity of cochlear microphonics (CM) as the index of the activity of the hair cell].
    Shida T; Sugano T; Maruyama R; Takegami T; Imai J
    Nihon Jibiinkoka Gakkai Kaiho; 1972 Oct; 75(10):1022-3. PubMed ID: 4676068
    [No Abstract]   [Full Text] [Related]  

  • 8. The transducer action of the cochlea: some recent advances.
    Bosher SK
    Sci Basis Med Annu Rev; 1970; ():131-51. PubMed ID: 4920176
    [No Abstract]   [Full Text] [Related]  

  • 9. Acoustic responses after total destruction of the cochlear receptor: brainstem and auditory cortex.
    Cazals Y; Aran JM; Erre JP; Guilhaume A
    Science; 1980 Oct; 210(4465):83-6. PubMed ID: 6968092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of kanamycin and ethacrynic acid. Severe cochlear damage in guinea pigs.
    West BA; Brummett RE; Himes DL
    Arch Otolaryngol; 1973 Jul; 98(1):32-7. PubMed ID: 4713139
    [No Abstract]   [Full Text] [Related]  

  • 11. Nonlinearities in cochlear receptor potentials and their origins.
    Dallos P; Cheatham MA
    J Acoust Soc Am; 1989 Nov; 86(5):1790-6. PubMed ID: 2808928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Demonstration of a change in electric impedance produced by displacements of the organ of Corti].
    Legouix JP
    C R Seances Soc Biol Fil; 1967; 161(1):94-7. PubMed ID: 4234337
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of cochlear microphonic potentials from albino and pigmented guinea pigs.
    Nuttall AL
    Acta Otolaryngol; 1974; 78(3-4):187-91. PubMed ID: 4432742
    [No Abstract]   [Full Text] [Related]  

  • 14. Frequency-specific position shift in the guinea pig organ of Corti.
    Brundin L; Flock A; Khanna SM; Ulfendahl M
    Neurosci Lett; 1991 Jul; 128(1):77-80. PubMed ID: 1922951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cochlear microphonic enhancement in two tone interactions.
    Nuttall AL; Dolan DF
    Hear Res; 1991 Feb; 51(2):235-45. PubMed ID: 2032959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Sensory cells as energy transforming and information processing systems. Introductory lecture at the 4th convention on inner ear biochemistry].
    Plattig KH
    HNO; 1968 Apr; 16(4):97-105. PubMed ID: 5685984
    [No Abstract]   [Full Text] [Related]  

  • 17. Molecular profile of cochlear immunity in the resident cells of the organ of Corti.
    Cai Q; Vethanayagam RR; Yang S; Bard J; Jamison J; Cartwright D; Dong Y; Hu BH
    J Neuroinflammation; 2014 Oct; 11():173. PubMed ID: 25311735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological and morphological changes in the guinea pig cochlea following mechanical trauma to the organ of Corti.
    Cody AR; Robertson D; Bredberg G; Johnston BM
    Acta Otolaryngol; 1980; 89(5-6):440-52. PubMed ID: 7446064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for electrically evoked travelling waves in the guinea pig cochlea.
    Kirk DL; Yates GK
    Hear Res; 1994 Apr; 74(1-2):38-50. PubMed ID: 8040098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of anoxia on microphonic potentials in the guinea pig fetus.
    Chodynicki S; Matwijewicz J
    Ann Otol Rhinol Laryngol; 1968 Feb; 77(1):72-7. PubMed ID: 5645144
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.