These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4670413)

  • 1. Light intensity as regulator of photoinduced conversions in cytochromes during photosynthesis in Ectothiorhodospira shaposhnikovii.
    Rubin LB; Dubrovin VN
    Mol Biol; 1972 Jan; 5(4):412-8. PubMed ID: 4670413
    [No Abstract]   [Full Text] [Related]  

  • 2. Study of Ectothiorhodospira shaposhnikovii. Intracellular cytochrome oxidation reactions induced by ruby laser flashes.
    Grigorov LN; Zhivotchenko VD; Remennikov SM; Rubin LB; Rubin AB
    Mol Biol; 1971; 5(5):595-602. PubMed ID: 5154980
    [No Abstract]   [Full Text] [Related]  

  • 3. Spectrophotometric studies of the mechanism of photosynthesis.
    Fork DC; Amesz J
    Photophysiology; 1970; 5():97-126. PubMed ID: 4146947
    [No Abstract]   [Full Text] [Related]  

  • 4. [Effect of electron donors on the oxidation-reduction state of the electron-transport chain of ectothiorhodospira shaposhnikovii].
    Rubin LB; Shvinka IuE; Dubrovin VN; Adamova NP
    Mikrobiologiia; 1971; 40(6):949-55. PubMed ID: 5130745
    [No Abstract]   [Full Text] [Related]  

  • 5. [Studies on the light-induced cytochrome oxidation in the photosynthetizing purple bacteria Rhodopseudomonas sp].
    Rubin AB; Kononenko AA; Uspenskaia NIa; Ivanov ID
    Izv Akad Nauk SSSR Biol; 1968; 3():372-81. PubMed ID: 4312275
    [No Abstract]   [Full Text] [Related]  

  • 6. In situ characterisation of photosynthetic electron transport in Rhodopseudomonas capsulata.
    Evans EH; Crofts AR
    Biochim Biophys Acta; 1974 Jul; 357(1):89-102. PubMed ID: 4370093
    [No Abstract]   [Full Text] [Related]  

  • 7. [Bacterial photosynthesis: pyridine-nucleotide reduction in a chromatophore-free enzyme system from Rhodopseudomonas palustris].
    Knobloch K
    Hoppe Seylers Z Physiol Chem; 1972 May; 353(5):725-6. PubMed ID: 4341663
    [No Abstract]   [Full Text] [Related]  

  • 8. Generation of reducing power in bacterial photosynthesis. Rhodopseudomonas palustris.
    Knobloch K; Eley JH; Aleem MI
    Biochem Biophys Res Commun; 1971 May; 43(4):834-9. PubMed ID: 4327489
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation of chlorophyll synthesis in photosynthetic bacteria.
    Lien S; Gest H; San Pietro A
    J Bioenerg; 1973; 4(4):423-34. PubMed ID: 4723530
    [No Abstract]   [Full Text] [Related]  

  • 10. [EPR study of electron transport in higher plant photosynthetic systems. I. Effect of illumination prehistory on the kinetics of photoinduced oxidation-reduction transformations of P700].
    Tikhonov AN; Ruuge EK
    Biofizika; 1975; 20(6):1049-53. PubMed ID: 173408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-induced oxygen reduction as a probe of electron transport between respiratory and photosynthetic components in membranes of Rhodopseudomonas capsulata.
    Zannoni D; Jasper P; Marrs B
    Arch Biochem Biophys; 1978 Dec; 191(2):625-31. PubMed ID: 742893
    [No Abstract]   [Full Text] [Related]  

  • 12. On the interaction of photoactive bacteriochlorophyll with the primary electron acceptor in the reaction centre of Ectothiorhodospira shaposhnikovii.
    Kononenko AA; Lukashev EP; Rubin AB; Venediktov PS
    Biochim Biophys Acta; 1972 Jul; 275(1):130-3. PubMed ID: 5049016
    [No Abstract]   [Full Text] [Related]  

  • 13. A role for ubiquinone-10 in the b--c2 segment of the photosynthetic bacterial electron transport chain.
    Baccarini-Melandri A; Melandri BA
    FEBS Lett; 1977 Aug; 80(2):459-64. PubMed ID: 891997
    [No Abstract]   [Full Text] [Related]  

  • 14. The back reaction in the primary electron transfer couple of photosystem II of photosynthesis.
    Butler WL; Visser JW; Simons HL
    Biochim Biophys Acta; 1973 Dec; 325(3):539-45. PubMed ID: 4360259
    [No Abstract]   [Full Text] [Related]  

  • 15. Electron transport in an in vitro-reconstituted bacterial photophosphorylating system.
    Garcia GF; Drews G; Kamen MD
    Biochim Biophys Acta; 1975 Apr; 387(1):129-34. PubMed ID: 1125283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and thermodynamic properties of membrane-bound cytochromes of aerobically and photosynthetically grown Rhodopseudomonas spheroides.
    Connelly JL; Jones OT; Saunders VA; Yates DW
    Biochim Biophys Acta; 1973 Apr; 292(3):644-53. PubMed ID: 4540949
    [No Abstract]   [Full Text] [Related]  

  • 17. Adaptation in Rhodopseudomonas spheroides.
    Saunders VA; Jones OT
    FEBS Lett; 1974 Aug; 44(2):169-72. PubMed ID: 4371623
    [No Abstract]   [Full Text] [Related]  

  • 18. [Ectothiorhodospira shaposhnikovii respiration when growing in light and in darkness].
    Pedan LV; IvanovskiÄ­ RN
    Mikrobiologiia; 1980; 49(4):472-6. PubMed ID: 7412613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New experimental approach to the estimation of rate of electron transfer from the primary to secondary acceptors in the photosynthetic electron transport chain of purple bacteria.
    Chamorovsky SK; Remennikov SM; Kononenko AA; Venediktov PS; Rubin AB
    Biochim Biophys Acta; 1976 Apr; 430(1):62-70. PubMed ID: 816385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electrostatic interaction between the reaction-center bacteriochlorophyll derived from Rhodopseudomonas spheroides and mammalian cytochrome c and its effect on light-activated electron transport.
    Ke B; Chaney TH; Reed DW
    Biochim Biophys Acta; 1970 Sep; 216(2):373-83. PubMed ID: 5534045
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.