BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 467425)

  • 1. The effect of octanoate and palmitate on the metabolism of valine in perfused hindquarter of rat.
    Spydevold O
    Eur J Biochem; 1979 Jul; 97(2):389-94. PubMed ID: 467425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of branched-chain amino acids in skeletal muscle and liver of rat. Effects of octanoate and energy state.
    Spydevold O; Hokland B
    Biochim Biophys Acta; 1981 Sep; 676(3):279-88. PubMed ID: 6793084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose metabolism in perfused skeletal muscle. Effects of starvation, diabetes, fatty acids, acetoacetate, insulin and exercise on glucose uptake and disposition.
    Berger M; Hagg SA; Goodman MN; Ruderman NB
    Biochem J; 1976 Aug; 158(2):191-202. PubMed ID: 136249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrelationships and metabolic effects of fatty acids in the perfused rat liver at hyperthermic temperatures.
    Denor PF; Sonsalla JC; Menahan LA; Skibba JL
    Cancer Biochem Biophys; 1985 Jun; 8(1):9-22. PubMed ID: 4027946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid catabolism by perfused rat hindquarter. The metabolic fates of valine.
    Lee SH; Davis EJ
    Biochem J; 1986 Feb; 233(3):621-30. PubMed ID: 3085650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of perfusate leucine concentration on the metabolism of valine by the isolated rat hindquarter.
    Zapalowski C; Miller RH; Dixon JL; Harper AE
    Metabolism; 1984 Oct; 33(10):922-7. PubMed ID: 6482735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory effects of fatty acids on decarboxylation of leucine and 4-methyl-2-oxopentanoate in the perfused rat heart.
    Buxton DB; Barron LL; Taylor MK; Olson MS
    Biochem J; 1984 Aug; 221(3):593-9. PubMed ID: 6477487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of octanoate with branched-chain 2-oxo acid oxidation in rat and human muscle in vitro.
    Wagenmakers AJ; Veerkamp JH
    Int J Biochem; 1984; 16(9):977-84. PubMed ID: 6479435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sources of carbon skeleton of alanine released from skeletal muscle.
    Spydevold O
    Acta Physiol Scand; 1976 Jul; 97(3):273-80. PubMed ID: 961439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The activation and oxidation of octanoate and palmitate by rat skeletal muscle mitochondria.
    Groot PH; Hülsmann WC
    Biochim Biophys Acta; 1973 Aug; 316(2):124-35. PubMed ID: 4741907
    [No Abstract]   [Full Text] [Related]  

  • 11. An accurate and sensitive assay of [14C]octanoate oxidation and its application on tissue homogenates and fibroblasts.
    Veerkamp JH; van Moerkerk HT; Bakkeren JA
    Biochim Biophys Acta; 1986 Mar; 876(1):133-7. PubMed ID: 3081042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of starvation on muscle glucose metabolism: studies with the isolated perfused rat hindquarter.
    Ruderman NB; Goodman MN; Berger M; Hagg S
    Fed Proc; 1977 Feb; 36(2):171-6. PubMed ID: 838085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibitory effect of octanoate, palmitate and oleate on glucose formation in rabbit kidney tubules.
    Zabłocki K; Gemel J; Bryła J
    Biochim Biophys Acta; 1983 May; 757(1):111-8. PubMed ID: 6838901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of acetate and octanoate on tricarboxylic acid cycle metabolite disposal during propionate oxidation in the perfused rat heart.
    Sundqvist KE; Peuhkurinen KJ; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1984 Oct; 801(3):429-36. PubMed ID: 6487652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of octanoate and its effect on glucose and palmitate utilization by isolated fat cells.
    Maragoudakis ME; Kalinsky HJ; Lennane J
    Proc Soc Exp Biol Med; 1975 Mar; 148(3):606-10. PubMed ID: 236573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional utilization of palmitate, octanoate, and glucose by the isolated rat heart.
    Morrow RJ; Neely ML; Paradise RR
    Proc Soc Exp Biol Med; 1973 Jan; 142(1):223-9. PubMed ID: 4683244
    [No Abstract]   [Full Text] [Related]  

  • 17. Utilization of glucose, octanoate and palmitate by normal rat aorta, and the effect of these acids and of albumin on glucose metabolism.
    Hashimoto S; Dayton S
    Proc Soc Exp Biol Med; 1968 Oct; 129(1):35-41. PubMed ID: 5686537
    [No Abstract]   [Full Text] [Related]  

  • 18. Replenishment and depletion of citric acid cycle intermediates in skeletal muscle. Indication of pyruvate carboxylation.
    Spydevold S; Davis EJ; Bremer J
    Eur J Biochem; 1976 Dec; 71(1):155-65. PubMed ID: 1009946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of branched chain amino acids by isolated hearts and diaphragms of the rat. The effect of fatty acids, glucose, and pyruvate respiration.
    Buse MG; Biggers JF; Friderici KH; Buse JF
    J Biol Chem; 1972 Dec; 247(24):8085-96. PubMed ID: 4640937
    [No Abstract]   [Full Text] [Related]  

  • 20. Fatty acid transport and metabolism in the isolated perfused rat kidney.
    Trimble ME; Harrington WW; Bowman RH
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():362-70. PubMed ID: 616371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.