These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 4675330)
1. Biochemical transformations of herbicide-derived anilines: requirements of molecular configuration. Bordeleau LM; Bartha R Can J Microbiol; 1972 Dec; 18(12):1873-82. PubMed ID: 4675330 [No Abstract] [Full Text] [Related]
2. Biochemical transformations of herbicide-derived anilines: purification and characterization of causative enzymes. Bordeleau LM; Bartha R Can J Microbiol; 1972 Dec; 18(12):1865-71. PubMed ID: 4675329 [No Abstract] [Full Text] [Related]
3. Biochemical transformations of herbicide-derived anilines in culture medium and in soil. Bordeleau LM; Bartha R Can J Microbiol; 1972 Dec; 18(12):1857-64. PubMed ID: 4649740 [No Abstract] [Full Text] [Related]
8. Oxidative coupling of aromatic pesticide intermediates by a fungal phenol oxidase. Sjoblad RD; Bollag JM Appl Environ Microbiol; 1977 Apr; 33(4):906-10. PubMed ID: 869536 [TBL] [Abstract][Full Text] [Related]
9. Formation of tetrachloroazobenzene in some Canadian soils treated with propanil and 3,4-dichloroaniline. Hughes AF; Corke CT Can J Microbiol; 1974 Jan; 20(1):35-9. PubMed ID: 4822779 [No Abstract] [Full Text] [Related]
10. Pesticide transformation to aniline and azo compounds in soil. Bartha R; Pramer D Science; 1967 Jun; 156(3782):1617-8. PubMed ID: 6025121 [TBL] [Abstract][Full Text] [Related]
11. Degradation of chlorbromuron and related compounds by the fungus Rhizoctonia solani. Weinberger M; Bollag JM Appl Microbiol; 1972 Nov; 24(5):750-4. PubMed ID: 4640737 [TBL] [Abstract][Full Text] [Related]
12. Metabolism of propanil in soils. Chisaka H; Kearney PC J Agric Food Chem; 1970; 18(5):854-8. PubMed ID: 5474243 [No Abstract] [Full Text] [Related]
13. Formation of 3,3',4,4'-tetrachloroazobenzene from 3,4-dichloroaniline in Ontario soils. Sprott GD; Corke CT Can J Microbiol; 1971 Feb; 17(2):235-40. PubMed ID: 5548318 [No Abstract] [Full Text] [Related]
14. [Biodegradation of herbicide pendimethalin by fungi and its characteristics]. Lin A; Zhu L; Wang J; Liu A; Sun R Ying Yong Sheng Tai Xue Bao; 2003 Nov; 14(11):1929-33. PubMed ID: 14997649 [TBL] [Abstract][Full Text] [Related]
15. Microbial metabolism of alkylbenzene sulphonates. Fungal metabolism of 1-phenylundecane-p-sulphonate and 1-phenyldodecane-p-sulphonate. Willetts AJ Antonie Van Leeuwenhoek; 1973 Nov; 39(4):585-97. PubMed ID: 4543756 [No Abstract] [Full Text] [Related]
16. Degradation and metabolism of fluchloralin in soil. Otto S Environ Qual Saf Suppl; 1975; 3():277-81. PubMed ID: 1063644 [No Abstract] [Full Text] [Related]
17. Influence of soil moisture and microbial activity on pendimethalin degradation. Kulshrestha G; Singh SB Bull Environ Contam Toxicol; 1992 Feb; 48(2):269-74. PubMed ID: 1536999 [No Abstract] [Full Text] [Related]
18. Persistence and mutagenic potential of herbicide-derived aniline residues in pond water. Lyons CD; Katz SE; Bartha R Bull Environ Contam Toxicol; 1985 Nov; 35(5):696-703. PubMed ID: 4074935 [No Abstract] [Full Text] [Related]
19. Metobromuron: acetylation of the aniline moiety as a detoxification mechanism. Tweedy BG; Loeppky C; Ross JA Science; 1970 Apr; 168(3930):482-3. PubMed ID: 5436083 [TBL] [Abstract][Full Text] [Related]
20. Metabolism of dyfonate by soil fungi. Flashinski SJ; Lichtenstein EP Can J Microbiol; 1974 Mar; 20(3):399-411. PubMed ID: 4132522 [No Abstract] [Full Text] [Related] [Next] [New Search]